Objective. To determine the effects of TLN on glycolipid metabolism, oxidative stress, and intestinal flora in diabetic rat. Materials and Methods. Thirty-five male Sprague-Dawley (SD) rats (180–200 g) were divided into two groups. The normal group was fed a standard-chow diet, whereas, in the model group, diabetes was induced by intraperitoneal administration of streptozotocin (STZ) combined with a high-fat sucrose diet. Then, the model group was randomly allocated to four groups: DM (diabetes model) and TLNH (TLN high dose), TLNL (TLN low dose), and NAC (N-acetylcysteine). Rats in the TLNH, TLNL, and NAC groups were intragastrically administered TLN and NAC for 12 weeks. Subsequently, their weights, fasting glucose levels, serum lipids, serum insulin, serum ROS, and intestinal flora were determined. Results. The weight and intestinal flora abundance of the DM group were significantly lower than those of the normal group, whereas their total serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), serum reactive oxygen species (ROS), and serum insulin (INS) levels were significantly higher than those of the normal group. TC and LDL-C levels in the TLNL group and DM group were similar, whereas FBG, INS, and ROS levels in the TLNL group were obviously lower than those in the DM group. Compared with the DM group, there was a significant increase in intestinal flora abundance in the TLNL group. At the phylum level, the ratio of Firmicutes to Bacteroidetes (core microbiota) varied in all groups. However, in the DM group, Firmicutes abundance decreased, whereas that of Bacteroidetes increased. An opposite trend was observed in the TLN-treated groups. Conclusions. TLN, which showed a dose-dependent therapeutic effect, can effectively decrease serum lipid, serum insulin, blood glucose, and serum ROS levels. It can also rebalance the ratio of Firmicutes to Bacteroidetes. Furthermore, the low-dose TLN treatment was most efficacious.
Objective. This study aimed to observe the regulatory effects of astragaloside IV (AS-IV) on hyperglycemia-induced mitochondrial damage and mitophagy in Schwann cells and to provide references for clinical trials on AS-IV in the treatment of diabetic peripheral neuropathy. Methods. Schwann cells were grown in a high-glucose medium to construct an autophagy model; the cells were then treated with AS-IV and N-acetylcysteine (control) to observe the regulatory effects of AS-IV on oxidative stress and mitophagy. Results. AS-IV exhibited antioxidant activity and inhibited the overactivation of autophagy in Schwann cells, significantly reducing the level of reactive oxygen species and downregulating the expression of autophagy-related proteins (LC3, PINK, and Parkin) under hyperglycemic conditions, thereby exerting a protective effect on mitochondrial morphology and membrane potential. Conclusion. AS-IV can maintain the mitochondrial function of Schwann cells under hyperglycemic conditions by effectively alleviating oxidative stress and overactivation of mitophagy. The evidence from this study supports an AS-IV-based therapeutic strategy against diabetic peripheral neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.