As a new type of reinforced material, geocells are widely used in flexible reinforced retaining wall projects, and a lot of practical experience shows that the geocell retaining wall has a great effect on earthquake resistance, but theoretical research lags behind engineering practice, and the deformation and failure mechanism under earthquake need to be further studied. In this paper, we use the FLAC3D nonlinear, finite-difference method to study the failure mechanism of geocell-reinforced retaining walls under earthquake, to analyze the advantages of the geocell retaining wall in controlling deformation compared with the unreinforced retaining wall and geogrid-reinforced retaining wall, and we try to study the deformation of the reinforced wall by changing the length of the geocell and reinforcement spacing of the geocell. Research indicates the horizontal displacement of the wall edge of the reinforced retaining wall under the earthquake is slightly smaller than that of the center of the wall and the back of the wall. The geocell can effectively reduce the horizontal displacement of the retaining wall, and the effect is better than the geogrid. Increasing the length of the geocell and reducing the spacing of the geocell can effectively reduce the horizontal displacement of the retaining wall, and the effect of displacement controlling at the top of the wall is better than in other positions.
In the slope stability analysis, how to make the slip surface of the structure more precise and smoother has been the focus of research when fitting the slip surface with known numerical points. The study found that the logistic function has both advantages in fitting the slip surface. The related parameters (M, A, and K) are derived by the threshold, symmetry, and precision control of its function. Logistic function constructs the slip surface and compares it with the broken-line slip surface; the numerical results show that the slip points on the two slip surfaces are consistent, indicating that the logistic function fits the curve correctly; the logistic function smooths the original polyline curve, which facilitates solving the direction vector of the curve.
Three sets of indoor model tests of reinforced retaining walls were conducted to study the effects of reinforcing material placement on the displacement of reinforced retaining walls, wall top settlement, earth pressure distribution, and potential failure surface. The test results show that under different reinforcement laying conditions, the maximum horizontal displacement of the lower wall panel appears at the top of the lower retaining wall, and the maximum horizontal displacement of the upper wall panel appears at 0.6H. The settlement of the top of the wall decreases by about 9.1% when the reinforcement is laid in the lower layer. Under the condition of 160 kPa, the maximum horizontal and vertical earth pressures increase by about 19.2 and 12.4%, respectively, and the position of the potential fracture surface of the lower wall moves up to the back of the wall with the position of the reinforcement laying. When the reinforcement is laid in the upper layer, the fracture surface of the upper wall is furthest away from the panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.