Background With the unprecedented morbidity and mortality associated with the COVID-19 pandemic, a vaccine against COVID-19 is urgently needed. We investigated CoronaVac (Sinovac Life Sciences, Beijing, China), an inactivated vaccine candidate against COVID-19, containing inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for its safety, tolerability and immunogenicity. Methods In this randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, healthy adults aged 18-59 years were recruited from the community in Suining County of Jiangsu province, China. Adults with SARS-CoV-2 exposure or infection history, with axillary temperature above 37•0°C, or an allergic reaction to any vaccine component were excluded. The experimental vaccine for the phase 1 trial was manufactured using a cell factory process (CellSTACK Cell Culture Chamber 10, Corning, Wujiang, China) , whereas those for the phase 2 trial were produced through a bioreactor process (ReadyToProcess WAVE 25, GE, Umea, Sweden). The phase 1 trial was done in a dose-escalating manner. At screening, participants were initially separated (1:1), with no specific randomisation, into two vaccination schedule cohorts, the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and within each cohort the first 36 participants were assigned to block 1 (low dose CoronaVac [3 μg per 0•5 mL of aluminium hydroxide diluent per dose) then another 36 were assigned to block 2 (high-dose Coronavc [6 μg per 0•5 mL of aluminium hydroxide diluent per dse]). Within each block, participants were randomly assigned (2:1), using block randomisation with a block size of six, to either two doses of CoronaVac or two doses of placebo. In the phase 2 trial, at screening, participants were initially separated (1:1), with no specific randomisation, into the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and participants were randomly assigned (2:2:1), using block randomisation with a block size of five, to receive two doses of either low-dose CoronaVac, high-dose CoronaVac, or placebo. Participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after injection in all participants who were given at least one dose of study drug (safety population). The primary immunogenic outcome was seroconversion rates of neutralising antibodies to live SARS-CoV-2 at day 14 after the last dose in the days 0 and 14 cohort, and at day 28 after the last dose in the days 0 and 28 cohort in participants who completed their allocated two-dose vaccination schedule (per-protocol population). This trial is registered with ClinicalTrials.gov, NCT04352608, and is closed to accrual. Findings Between April 16 and April 25, 2020, 144 participants were enrolled in the phase 1 trial, and between May 3 and May 5, 2020, 600 participants were enrolled in the phase 2 trial. 743 participants received at least one dose of investigational product (n=143 for ph...
Background A vaccine against COVID-19 is urgently needed for older adults, in whom morbidity and mortality due to the disease are increased. We aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in adults aged 60 years and older. Methods We did a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial of CoronaVac in healthy adults aged 60 years and older in Renqiu (Hebei, China). Vaccine or placebo was given by intramuscular injection in two doses (days 0 and 28). Phase 1 comprised a dose-escalation study, in which participants were allocated to two blocks: block 1 (3 μg inactivated virus in 0•5 mL of aluminium hydroxide solution per injection) and block 2 (6 μg per injection). Within each block, participants were randomly assigned (2:1) using block randomisation to receive CoronaVac or placebo (aluminium hydroxide solution only). In phase 2, participants were randomly assigned (2:2:2:1) using block randomisation to receive either CoronaVac at 1•5 μg, 3 µg, or 6 µg per dose, or placebo. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint was seroconversion rate at 28 days after the second injection (which was assessed in all participants who had received the two doses of vaccine according to their random assignment, had antibody results available, and did not violate the trial protocol). Seroconversion was defined as a change from seronegative at baseline to seropositive for neutralising antibodies to live SARS-CoV-2 (positive cutoff titre 1/8), or a four-fold titre increase if the participant was seropositive at baseline. This study is ongoing and is registered with ClinicalTrials.gov (NCT04383574). Findings Between May 22 and June 1, 2020, 72 participants (24 in each intervention group and 24 in the placebo group; mean age 65•8 years [SD 4•8]) were enrolled in phase 1, and between June 12 and June 15, 2020, 350 participants were enrolled in phase 2 (100 in each intervention group and 50 in the placebo group; mean age 66•6 years [SD 4•7] in 349 participants). In the safety populations from both phases, any adverse reaction within 28 days after injection occurred in 20 (20%) of 100 participants in the 1•5 μg group, 25 (20%) of 125 in the 3 μg group, 27 (22%) of 123 in the 6 μg group, and 15 (21%) of 73 in the placebo group. All adverse reactions were mild or moderate in severity and injection site pain (39 [9%] of 421 participants) was the most frequently reported event. As of Aug 28, 2020, eight serious adverse events, considered unrelated to vaccination, have been reported by seven (2%) participants. In phase 1, seroconversion after the second dose was observed in 24 of 24 participants (100•0% [95% CI 85•8-100•0]) in the 3 μg group and 22 of 23 (95•7% [78•1-99•9]) in the 6 μg group. In phase 2, sero...
Dear Editor, Accumulating clinical data suggest the main causes of death by COVID-19 include respiratory failure and the onset of sepsis. 1 Importantly, sepsis has been observed in nearly all deceased patients. 2-5 It remains elusive how SARS-CoV-2 infection results in viral sepsis in humans. Toll-like receptor 4 (TLR4) mediates antigram-negative bacterial immune responses by recognizing lipopolysaccharide (LPS) from bacteria. 6 We recently found that SARS-CoV-2 infection provoked an anti-bacterial like response at the very early stage of infection via TLR4. However, the identity of the original trigger initiating these abnormal immune responses during SARS-CoV-2 infection is unknown. Previous in silico studies predicted cell surface TLRs, especially TLR4, are most likely to be involved in recognizing molecular patterns, probably spike protein, from SARS-CoV-2 to induce inflammatory responses. 7,8 Consistently, we found that the induction of IL1B by SARS-CoV-2 was completely blocked by TLR4-specific inhibitor Resatorvid (Fig. 1a). Combined with our recent data that TLR4 signaling was activated by SARS-CoV-2, we hypothesized that spike protein could activate TLR4 pathway. A recent study has reported that trimeric SARS-CoV-2 spike proteins are high quality antigens. 9 To this end, we purified the trimeric spike protein (1-1208 aa) (Fig. 1b; Supplementary information, Fig. S1a), as this form of spike protein presents on the surface of viral particle, which most likely interacts with the proteins on the cell surface. Results of the surface plasmon resonance (SPR) assay showed that SARS-CoV-2 spike trimer directly bound to TLR4 with an affinity of~300 nM (Fig. 1b), comparable to many virus-receptor interactions. We then treated THP-1 cells, a cell line of human monocytes, with purified spike protein. IL1B was robustly induced by spike protein in a dose-dependent manner (Fig. 1c), which was comparable to LPS (Supplementary information, Fig. S1b). IL6 was also induced by spike protein (Supplementary information, Fig. S1c). As IL1B induction was much more robust than that of IL6, we chose IL1B production as a marker of immune activation. Moreover, the pseudovirus expressing spike protein can also induce IL1B production (Fig. 1d). Neutrophils also express TLR4 on their cell surface and play an important role in the development of sepsis. We utilized all-trans retinoic acid (ATRA) to treat HL-60 cell (a promyelocytic leukemia cell line), which directed those cells to differentiate into neutrophils. Spike proteins significantly induced IL1B production in HL-60 cells after ATRA treatment (Fig. 1e; Supplementary information, Fig. S1d). We treated THP-1 cells with the N-terminal domain (NTD) or the receptor-binding domain (RBD) of spike protein. Only the trimeric protein could induce IL1B and IL6 (Fig. 1f; Supplementary information, Fig. S1e). To examine if this activation was mediated by TLR4, we treated cells with Resatorvid. Resatorvid greatly blocked induction of IL1B by spike protein and LPS (Fig. 1g). Moreover, spike pro...
Background Coronavirus disease 2019 (COVID-19) is a pandemic with no specific antiviral treatments or vaccines. There is an urgent need for exploring the neutralizing antibodies from patients with different clinical characteristics. Methods A total of 117 blood samples were collected from 70 COVID-19 inpatients and convalescent patients. Antibodies were determined with a modified cytopathogenic neutralization assay (NA) based on live severe acute respiratory syndrome coronavirus 2 and enzyme-linked immunosorbent assay (ELISA). The dynamics of neutralizing antibody levels at different time points with different clinical characteristics were analyzed. Results The seropositivity rate reached up to 100.0% within 20 days since onset, and remained 100.0% till days 41–53. The total geometric mean titer was 1:163.7 (95% confidence interval [CI], 128.5–208.6) by NA and 1:12 441.7 (95% CI, 9754.5–15 869.2) by ELISA. The antibody level by NA and ELISA peaked on days 31–40 since onset, and then decreased slightly. In multivariate generalized estimating equation analysis, patients aged 31–45, 46–60, and 61–84 years had a higher neutralizing antibody level than those aged 16–30 years (β = 1.0470, P = .0125; β = 1.0613, P = .0307; β = 1.3713, P = .0020). Patients with a worse clinical classification had a higher neutralizing antibody titer (β = 0.4639, P = .0227). Conclusions The neutralizing antibodies were detected even at the early stage of disease, and a significant response was shown in convalescent patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.