To study the effects of operational parameters on gasifying characteristics in the jet-fluidized-bed reactor and illustrate the scaling relationships of jet-fluidized-bed coal gasifier in a scale-up process, we established an equivalent reactor network model for the gasifier using CHEMKIN 4.1 software. The model is based on hydrodynamic properties in the gasifier and knowledge of the burning zone and gasifying zone of the reactor. It involves two-phase flow between materials, heat and mass transfer, as well as the coal gasification process in the presence of mixed gases, most notably H 2 O, O 2 , N 2 , etc. The model was validated by comparing it to the experimental data of outlet gas compositions. To optimize characteristics of the jet-fluidized-bed coal gasifier, the influence of the oxygen feed rate into the center nozzle and the coal feed rate on the gasification process and gas composition were studied by the equivalent established reactor network. Within the calculation range, with the increase of the oxygen feed rate into the center nozzle, the jet region nearly doubled, the temperature increased by 306 K, carbon conversion efficiency rose from 68 to 97%; however, the temperature of the jetting region should be controlled within the coal ash-softening temperature, and in generated gases, the CO and H 2 contents had clearly changed. With the increase of the coal processing capacity, the jet region temperature decreased by 252 K, the gasifier overall temperature decreased, and carbon conversion reduced from 98 to 74%.
To study the influence of fluidized-bed reactor scale-up on coal gasification characteristics, a model of the ash agglomerating fluidized-bed reactor has been developed using an equivalent reactor network method. With the reactor network model, the scale-up effects of a gasifier were studied in terms of the characteristics of the chemical reactions in the jet zone, the annulus dense-phase zone and the freeboard zone. Results showed that the changes occurred in the inequality proportion of the volume of the jet zone during the reactor scale-up. Taking into consideration the utilization of a portion of the backflow gas, the expansion of the jet zone volume and the coal particle residence time, the temperature of the jet zone was increased from 1592 to 1662 K. Also, both the annulus dense-phase zone temperature and the freeboard zone temperature decreased, causing subsequent decrease in the carbon conversion efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.