The existing decoy-state quantum key distribution (QKD) beating photon-number-splitting (PNS) attack provides a more accurate method to estimate secure key rate, while it still considers that only single-photon pulses can generate secure keys in any case. However, multiphoton pulses can also generate secure keys if we can detect the possibility of PNS attack in the channel. The ultimate goal of this line of research is to confirm the absence of all types of PNS attacks. In particular, the PNS attack mentioned and detected in this paper is only the weaker version of PNS attack which significantly changes the observed values of legitimate users. In this paper, under the null hypothesis of no weaker version of PNS attack, we first determine whether there is an attack or not by retrieving the missing information of the existing decoy-state protocols, extract a Cauchy distribution statistic, and further provide a detection method and the Type I error probability. If the result is judged to be an attack, we can use the existing decoy-state method and the GLLP formula to estimate secure key rate. Otherwise, the pulses with the same basis received including both single-photon pulses and multiphoton pulses, can be used to generate the keys and we give the secure key rate in this case. Finally, the associated experiments we performed (i.e., the significance level is 5%) show the correctness of our method.
The angle auto-tracking capability is needed in the deep space system, but in the sum-differential dual channels tracking model, the deep-space TT&C system must calibrate its phase before tracking a satellite. Because of the big aperture and high frequency of the deep-space TT&C system antenna, it is impossible to build a calibrating tower which satisfy the far-field condition, and the traditional phase calibration method relies on the tower is not suitable. The radio star calibration method selects a appropriate satellite as the calibrating signal source, but the signal of which is very weak and is affected easily. In this paper, the principle of phase calibration is analyzed, and the beam waveguide focus calibration method is studied, the processes of antenna tracking and angle error signal demodulation are given. The beam waveguide focus calibration method simulates the far field signal through controlling the position of horn antenna which is at the focus of the beam waveguide. The method can be realized easily in engineering, and the limit of the traditional calibration tower and the affections of the weather in using radio star calibration method are avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.