Electromyogram (EMG) signals contain useful information of the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS is a well-known brain disease, which can progressively degenerate the motor neurons. In this paper, we propose a deep learning based method for efficient classification of ALS and normal EMG signals. Spectrogram, continuous wavelet transform (CWT), and smoothed pseudo Wigner-Ville distribution (SPWVD) have been employed for time-frequency (T-F) representation of EMG signals. A convolutional neural network is employed to classify these features. In it, Two convolution layers, two pooling layer, a fully connected layer and a lost function layer is considered in CNN architecture. The CNN architecture is trained with the reinforcement sample learning strategy. The efficiency of the proposed implementation is tested on publicly available EMG dataset. The dataset contains 89 ALS and 133 normal EMG signals with 24 kHz sampling frequency. Experimental results show 96.80% accuracy. The obtained results are also compared with other methods, which show the superiority of the proposed method.
Detection of epileptic seizure in electroencephalogram (EEG) signals is a challenging task and requires highly skilled neurophysiologists. Therefore, computer-aided detection helps neurophysiologist in interpreting the EEG. In this paper, texture representation of the time–frequency (t–f) image-based epileptic seizure detection is proposed. More specifically, we propose texture descriptor-based features to discriminate normal and epileptic seizure in t–f domain. To this end, three popular texture descriptors are employed, namely gray-level co-occurrence matrix (GLCM), texture feature coding method (TFCM), and local binary pattern (LBP). The features that are obtained on the GLCM are contrast, correlation, energy, and homogeneity. Moreover, in the TFCM method, several statistical features are calculated. In addition, for the LBP, the histogram is used as a feature. In the classification stage, a support vector machine classifier is employed. We evaluate our proposal with extensive experiments. According to the evaluated terms, our method produces successful results. 100 % accuracy is obtained with LIBLINEAR. We also compare our method with other published methods and the results show the superiority of our proposed method.
k-nearest neighbors (k-NN), which is known to be a simple and efficient approach, is a non-parametric supervised classifier. It aims to determine the class label of an unknown sample by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are determined based on some distance functions. Although k-NN produces successful results, there have been some extensions for improving its precision. The neutrosophic set (NS) defines three memberships namely T, I and F. T, I, and F shows the truth membership degree, the false membership degree, and the indeterminacy membership degree, respectively. In this paper, the NS memberships are adopted to improve the classification performance of the k-NN classifier. A new straightforward k-NN approach is proposed based on NS theory. It calculates the NS memberships based on a supervised neutrosophic c-means (NCM) algorithm. A final belonging membership U is calculated from the NS triples as U = T + I − F. A similar final voting scheme as given in fuzzy k-NN is considered for class label determination. Extensive experiments are conducted to evaluate the proposed method's performance. To this end, several toy and real-world datasets are used. We further compare the proposed method with k-NN, fuzzy k-NN, and two weighted k-NN schemes. The results are encouraging and the improvement is obvious.
Color image segmentation can be defined as dividing a color image into several disjoint, homogeneous, and meaningful regions based on the color information. This paper proposes an efficient segmentation algorithm for color images based on neutrosophic adaptive mean shift (NAMS) clustering. Firstly, an image is transformed in neutrosophic set and interpreted by three subsets: true, indeterminate, and false memberships. Then a filter is designed using indeterminacy membership value, and neighbors' features are employed to alleviate indeterminacy degree of image. A new mean shift clustering, improved by neutrosophic set, is employed to categorize the pixels into different groups whose bandwidth is determined by the indeterminacy values adaptively. At last, the segmentation is achieved using the clustering results. Various experiments have been conducted to verify the performance of the proposed approach. A published method was then employed to take comparison with the NAMS on clean, low contrast, and noisy images, respectively. The results demonstrate the NAMS method achieves better performances on both clean image and low contrast and noisy images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.