Multiderivative time integrators have a long history of development for ordinary differential equations, and yet to date, only a small subset of these methods have been explored as a tool for solving partial differential equations (PDEs). This large class of time integrators include all popular (multistage) Runge-Kutta as well as single-step (multiderivative) Taylor methods. (The latter are commonly referred to as Lax-Wendroff methods when applied to PDEs.) In this work, we offer explicit multistage multiderivative time integrators for hyperbolic conservation laws. Like Lax-Wendroff methods, multiderivative integrators permit the evaluation of higher derivatives of the unknown in order to decrease the memory footprint and communication overhead. Like traditional Runge-Kutta methods, multiderivative integrators admit the addition of extra stages, which introduce extra degrees of freedom that can be used to increase the order of accuracy or modify the region of absolute stability. We describe a general framework for how these methods can be applied to two separate spatial discretizations: the discontinuous Galerkin (DG) method and the finite difference essentially non-oscillatory (FD-WENO) method. The two proposed implementations are substantially different: for DG we leverage techniques that are closely related to generalized Riemann solvers; for FD-WENO we construct higher spatial derivatives with central differences. Among multiderivative time integrators, we argue that multistage two-derivative
This work is devoted to the study of field-aligned interpolation in semi-Lagrangian codes. In the context of numerical simulations of magnetic fusion devices, this approach is motivated by the observation that gradients of the solution along the magnetic field lines are typically much smaller than along a perpendicular direction. In toroidal geometry, fieldaligned interpolation consists of a 1D interpolation along the field line, combined with 2D interpolations on the poloidal planes (at the intersections with the field line). A theoretical justification of the method is provided in the simplified context of constant advection on a 2D periodic domain: unconditional stability is proven, and error estimates are given which highlight the advantages of field-aligned interpolation. The same methodology is successfully applied to the solution of the gyrokinetic Vlasov equation, for which we present the ion temperature gradient (ITG) instability as a classical test-case: first we solve this in cylindrical geometry (screw-pinch), and next in toroidal geometry (circular Tokamak). In the first case, the algorithm is implemented in Selalib (semi-Lagrangian library), and the numerical simulations provide linear growth rates that are in accordance with the linear dispersion analysis. In the second case, the algorithm is implemented in the Gysela code, and the numerical simulations are benchmarked with those employing the standard (not aligned) scheme. Numerical experiments show that field-aligned interpolation leads to considerable memory savings for the same level of accuracy; substantial savings are also expected in reactor-scale simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.