Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body.
Using this experimental animal model, more new bone tissue was found when it was inserted the rhBMP-2, especially when this protein was combined to the vehicle, and this process seems to be dose dependent.
This study analyzed the newly formed bone tissue after application of recombinant human BMP-2 (rhBMP-2) and P-1 (extracted from Hevea brasiliensis) proteins, 2 weeks after the creation of a critical bone defect in male Wistar rats treated or not with a low-intensity laser (GaAlAs 780 nm, 60 mW of power, and energy density dose of 30 J/cm(2)). The animals were divided into two major groups: (1) bone defect plus low-intensity laser treatment and (2) bone defect without laser irradiation. The following subgroups were also analyzed: (a) 5 μg of pure rhBMP-2; (b) 5 μg of pure P-1 fraction; (c) 5 μg of rhBMP-2/monoolein gel; (d) 5 μg of P-1 fraction/monoolein gel; (e) pure monoolein gel. Comparisons of the groups receiving laser treatment with those that did not receive laser irradiation show differences in the areas of new bone tissue. The group treated with 5 μg of rhBMP-2 and laser irradiation was not significantly different (P >0.05) than the nonirradiated group that received the same treatment. The irradiated, rhBMP-2/monoolein gel treatment group showed a lower area of bone formation than the nonirradiated, rhBMP-2/gel monoolein treatment group (P < 0.001). The area of new bone tissue in the other nonirradiated and irradiated groups was not significantly different (P > 0.05). Furthermore, the group that received the 5 μg of rhBMP-2 application showed the greatest bone formation. We conclude that the laser treatment did not interfere with the area of new bone tissue growth and that the greatest stimulus for bone formation involved application of the rhBMP-2 protein.
Carotid artery disease has been linked with cerebral vascular accident, also known as stroke, cerebral hemorrhage, or cerebral ischemia. It is caused by narrowing or obstruction of arteries in the neck (the carotid arteries) that are responsible for transporting blood from the aorta to the brain. Panoramic radiographs are used in dentistry to show both dental arches as a supplement to the clinical dental examination. The objective of this study is to highlight the importance of panoramic radiographs for diagnosis of arterial disease, by means of a bibliographic review. The PubMed database was searched using the keywords “atherosclerosis” and “panoramic”, with the filters “last 5 years” and “humans”. Twenty articles were identified, six of which were chosen for this study because they were open access. The review concluded that panoramic radiographs enable early diagnosis of carotid artery calcification, resulting in earlier interventions, and offer an accessible cost.
It is concluded that the data on skeletal muscles, especially those of mastication, are not commonly published in this data source; therefore, further studies in this field are strongly recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.