With age, the brain undergoes comprehensive changes in its function and physiology. Cerebral metabolism and blood supply are among the key physiologic processes supporting the daily function of the brain and may play an important role in age-related cognitive decline. Using MRI, it is now possible to make quantitative assessment of these parameters in a noninvasive manner. In the present study, we concurrently measured cerebral metabolic rate of oxygen (CMRO(2)), cerebral blood flow (CBF), and venous blood oxygenation in a well-characterized healthy adult cohort from 20 to 89 years old (N = 232). Our data showed that CMRO(2) increased significantly with age, while CBF decreased with age. This combination of higher demand and diminished supply resulted in a reduction of venous blood oxygenation with age. Regional CBF was also determined, and it was found that the spatial pattern of CBF decline was heterogeneous across the brain with prefrontal cortex, insular cortex, and caudate being the most affected regions. Aside from the resting state parameters, the blood vessels' ability to dilate, measured by cerebrovascular reactivity to 5% CO(2) inhalation, was assessed and was reduced with age, the extent of which was more prominent than that of the resting state CBF.
Epidemiologic evidence and postmortem studies of cerebral amyloid angiopathy suggest that vascular dysfunction may play an important role in the pathogenesis of Alzheimer's Disease (AD). However, alterations in vascular function under in vivo conditions are poorly understood. In this study, we assessed cerebrovascular-reactivity (CVR) in AD patients and age-matched controls using CO2-inhalation while simultaneously acquiring Blood-Oxygenation-Level-Dependent (BOLD) MR images. Compared to controls, AD patients had widespread reduction in CVR in the rostral brain including prefrontal, anterior cingulate, and insular cortex (p<0.01). The deficits could not be explained by cardiovascular risk factors. The spatial distribution of the CVR deficits differed drastically from the regions of cerebral blood flow (CBF) deficits, which were found in temporal and parietal cortices. Individuals with greater CVR deficit tended to have a greater volume of leukoaraiosis as seen on FLAIR MRI (p=0.004). Our data suggest that early AD subjects have evidence of significant forebrain vascular contractility deficits. The localization, while differing from CBF findings, appears to be spatially similar to PIB amyloid imaging findings.
The brain is a spatially heterogeneous and temporally dynamic organ, with different regions requiring different amount of blood supply at different time. Therefore, the ability of the blood vessels to dilate or constrict, known as Cerebral-Vascular-Reactivity (CVR), represents an important domain of vascular function. An imaging marker representing this dynamic property will provide new information of cerebral vessels under normal and diseased conditions such as stroke, dementia, atherosclerosis, small vessel diseases, brain tumor, traumatic brain injury, and multiple sclerosis. In order to perform this type of measurement in humans, it is necessary to deliver a vasoactive stimulus such as CO 2 and/or O 2 gas mixture while quantitative brain magnetic resonance images (MRI) are being collected. In this work, we presented a MR compatible gas-delivery system and the associated protocol that allow the delivery of special gas mixtures (e.g., O 2 , CO 2 , N 2 , and their combinations) while the subject is lying inside the MRI scanner. This system is relatively simple, economical, and easy to use, and the experimental protocol allows accurate mapping of CVR in both healthy volunteers and patients with neurological disorders. This approach has the potential to be used in broad clinical applications and in better understanding of brain vascular pathophysiology. In the video, we demonstrate how to set up the system inside an MRI suite and how to perform a complete experiment on a human participant.
Purpose To characterize multiple patterns of vascular changes in leukoaraiosis using in vivo magnetic resonance imaging (MRI) techniques. Materials and Methods We measured cerebral blood flow (CBF), cerebrovascular reactivity (CVR), and blood–brain-barrier (BBB) leakage in a group of 33 elderly subjects (age: 72.3 ± 6.8 years, 17 males, 16 females). Leukoaraiosis brain regions were identified in each subject using fluid-attenuated inversion-recovery (FLAIR) MRI. Vascular parameters in the leukoaraiosis regions were compared to those in the normal-appearing white matter (NAWM) regions. Vascular changes in leukoaraiosis were also compared to structural damage as assessed by diffusion tensor imaging. Results CBF and CVR in leukoaraiosis regions were found to be 39.7 ± 5.2% (P < 0.001) and 52.5 ± 11.6% (P = 0.005), respectively, of those in NAWM. In subjects who did not have significant leukoaraiosis, CBF and CVR in regions with high risk for leukoaraiosis showed a slight reduction compared to the other white matter regions. Significant BBB leakage was also detected (P = 0.003) in leukoaraiosis and the extent of BBB leakage was positively correlated with mean diffusivity. In addition, CVR in NAWM was lower than that in white matter of subjects without significant leukoaraiosis. Conclusion Leukoaraiosis was characterized by reduced CBF, CVR, and a leakage in the BBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.