Ferroptosis is a recently identified, iron-regulated, non-apoptotic form of cell death. It is characterized by cellular accumulation of lipid reactive oxygen species that ultimately leads to oxidative stress and cell death. Although first identified in cancer cells, ferroptosis has been shown to have significant implications in several neurologic diseases, such as ischemic and hemorrhagic stroke, Alzheimer's disease, and Parkinson's disease. This review summarizes current research on ferroptosis, its underlying mechanisms, and its role in the progression of different neurologic diseases. Understanding the role of ferroptosis could provide valuable information regarding treatment and prevention of these devastating diseases.
SummaryThis paper describes two-hybrid interactions amongst barley homeodomain proteins encoded by the Three Amino acid Loop Extension (TALE) superfamily. The class I KNOX protein BKN3 is shown to homodimerise and to associate with proteins encoded by the class I and II Knox genes BKn-1 and BKn-7. Furthermore, JUBEL1 and JUBEL2, two BELL1 homologous proteins, are identi®ed and characterised as interacting partners of BKN3. Differences in the requirements of BKN3 derivatives for interactions with KNOX and JUBEL proteins imply the involvement of overlapping but slightly different domains. This set of results is an example for interactions amongst different classes of plant TALE homeodomain proteins, as previously described for related animal proteins. Apparently identical spatial and temporal expression patterns of BKn-1, BKn-3, BKn-7, JuBel1 and JuBel2, as determined by in situ hybridisation, are compatible with possible interactions of their protein products in planta. Contradictory to the common model, that the transcriptional down-regulation of certain class 1 Knox-genes is the prerequisite for organ differentiation, transcripts of all ®ve genes were, similar to Tkn1 and Tkn2/LeT6 of tomato, detected in incipient and immature leaves as well as in meristematic tissues. A characteristic phenotype is induced by the overexpression of JuBel2 in transgenic tobacco plants.
Summary
In the dominant mutant Hooded (K), the barley gene BKn3 is overexpressed as a result of a duplication of 305 bp in intron IV. When fused to a cauliflower mosaic virus 35S minimal promoter, the 305 bp element activates gene expression in tobacco, as does a 655 bp BKn3 promoter sequence. Both DNA fragments contain a (GA)8 repeat (GA/TC)8. A one‐hybrid screen using the 305 bp element as the DNA target led to the cloning of the barley b recombinant (BBR) protein, which binds specifically to the (GA/TC)8 repeat. BBR is nuclear targeted and is a characterized nuclear localization signal (NLS) sequence, a DNA‐binding domain extended up to 90 aa at the C‐terminus and a putative N‐terminal activation domain. The corresponding gene has no introns and is ubiquitously expressed in barley tissues. In co‐transfection experiments, BBR activates (GA/TC)8‐containing promoters, and its overexpression in tobacco leads to a pronounced leaf shape modification. BBR has properties of a GAGA‐binding factor, but the corresponding gene has no sequence homology to Trl and Psq of Drosophila, which encode functionally analogous proteins. In Arabidopsis, (GA/TC)8 repeats occur particularly within 1500 bp upstream of gene start codons included in some homeodomain genes of different classes. The data presented suggest that expression of the barley BKn3 is regulated, at least in part, by the binding of the transcription factor BBR to GA/TC repeats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.