Clinical decision support systems (CDSS) have been designed, implemented, and validated to help clinicians and practitioners for decision-making about diagnosing some diseases. Within the CDSSs, we can find Fuzzy inference systems. For the reasons above, the objective of this study was to design, to implement, and to validate a methodology for developing data-driven Mamdani-type fuzzy clinical decision support systems using clusters and pivot tables. For validating the proposed methodology, we applied our algorithms on five public datasets including Wisconsin, Coimbra breast cancer, wart treatment (Immunotherapy and cryotherapy), and caesarian section, and compared them with other related works (Literature). The results show that the Kappa Statistics and accuracies were close to 1.0% and 100%, respectively for each output variable, which shows better accuracy than some literature results. The proposed framework could be considered as a deep learning technique because it is composed of various processing layers to learn representations of data with multiple levels of abstraction.
The goal of the present study was to evaluate techniques for modeling the physiological responses, rectal temperature, and respiratory rate of black and white Holstein dairy cows. Data from the literature (792 data points) and obtained experimentally (5884 data points) were used to fit and validate the models. Each datum included dry bulb air temperature, relative humidity, rectal temperature, and respiratory rate. Two models based on artificial intelligence-artificial neural networks and neurofuzzy networks-and one based on regression were evaluated for each response variable. The adjusted models predict rectal temperature and respiratory rate as a function of dry-bulb air temperature and relative humidity. These models were compared using statistical indices. The model based on artificial neural networks showed the best performance, followed by the models based on neurofuzzy networks and regression; the last two performed similarly.
Due to a number of factors involving the thermal environment of a broiler cutting installation and its interaction with the physiological and productive responses of birds, artificial intelligence has been shown to be an interesting methodology to assist in the decision-making process. For this reason, the main aim of this work was to develop an artificial neural network (ANN) to predict feed conversion (FC), water consumption (Cwater), and cloacal temperature (tclo) of broilers submitted to different air dry-bulb temperatures (24, 27, 30, and 33ºC) and durations (1, 2, 3, and 4 days) of thermal stress in the second week of the production cycle. Relative humidity and wind speed were fixed at 60% and 0.2 ms -1 , respectively. The experimental data were used for the development of an ANN with supervised training using the Levenberg-Marquardt backpropagation algorithm. The ANN consisted of three input layers one hidden, and three output with sigmoidal tangent transfer functions with values between -1 and 1. The developed ANN has adequate predictive capacity, with coefficients of determination (R 2 ) for tclo, FC, and Cwater of 0.79, 0.87, and 0.97, respectively. In this way, the proposed ANN can be used as a support for decision-making to trigger poultry heating systems for broiler breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.