Neotropical freshwater fishes have reached an unrivalled diversity, organized into several areas of endemism, yet the underlying processes are still largely unknown. The topographical and ecological characteristics of the Guyanas Region make it an ideal area of endemism in which to investigate the forces that have shaped this great diversity. This region is thought to be inhabited by species descending from Amazonian ancestors, which would have used two documented routes that, however, hardly explain the entrance of species adapted to running waters. Here, we investigate the evolutionary history of Pseudancistrus brevispinis, a catfish endemic to this region and exclusively found in running waters, thus making it an ideal model for investigating colonization routes and dispersal in such habitats. Our analyses, based on mitochondrial and nuclear markers, revealed an unexpected diversity consisting of six monophyletic lineages within P. brevispinis, showing a disjoint distribution pattern. The lineages endemic to Guyanas coastal rivers form a monophyletic group that originated via an ancestral colonization event from the Amazon basin. Evidence given favours a colonization pathway through river capture between an Amazonian tributary and the Upper Maroni River. Population genetic analyses of the most widespread species indicate that subsequent dispersal among Guyanas coastal rivers occurred principally by temporary connections between adjacent rivers during periods of lower sea level, yet instances of dispersal via interbasin river captures are not excluded. During high sea level intervals, the isolated populations would have diverged leading to the observed allopatric species. This evolutionary process is named the sea level fluctuation (SLF) hypothesis of diversification.
With an estimate of around 9,000 species, the Neotropical region hosts the greatest diversity of freshwater fishes of the world. Genetic surveys have the potential to unravel isolated and unique lineages and may result in the identification of undescribed species, accelerating the cataloguing of extant biodiversity. In this paper, molecular diversity within the valuable and widespread Neotropical genus Hoplias was assessed by means of DNA Barcoding. The geographic coverage spanned 40 degrees of latitude from French Guiana to Argentina. Our analyses revealed 22 mitochondrial lineages fully supported by means of Barcode Index Number, Automatic Barcode Gap Discovery and phylogenetic analyses. This mtDNA survey revealed the existence of 15 fully supported mitochondrial lineages within the once considered to be the continentally distributed H. malabaricus. Only four of them are currently described as valid species however, leaving 11 mitochondrial lineages currently “masked” within this species complex. Mean genetic divergence was 13.1%. Barcoding gap analysis discriminated 20 out of the 22 lineages tested. Phylogenetic analyses showed that all taxonomically recognized species form monophyletic groups. Hoplias malabaricus sensu stricto clustered within a large clade, excluding the representatives of the La Plata River Basin. In the H. lacerdae group, all species but H. curupira showed a cohesive match between taxonomic and molecular identification. Two different genetic lineages were recovered for H. aimara. Given the unexpected hidden mitochondrial diversity within H. malabaricus, the COI sequence composition of specimens from Suriname (the type locality), identified as H. malabaricus sensu stricto, is of major importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.