Deep neural networks provide state-of-the-art accuracy for vision tasks but they require significant resources for training. Thus, they are trained on cloud servers far from the edge devices that acquire the data. This issue increases communication cost, runtime and privacy concerns. In this study, a novel hierarchical training method for deep neural networks is proposed that uses early exits in a divided architecture between edge and cloud workers to reduce the communication cost, training runtime and privacy concerns. The method proposes a brand-new use case for early exits to separate the backward pass of neural networks between the edge and the cloud during the training phase. We address the issues of most available methods that due to the sequential nature of the training phase, cannot train the levels of hierarchy simultaneously or they do it with the cost of compromising privacy. In contrast, our method can use both edge and cloud workers simultaneously, does not share the raw input data with the cloud and does not require communication during the backward pass. Several simulations and on-device experiments for different neural network architectures demonstrate the effectiveness of this method. It is shown that the proposed method reduces the training runtime by 29% and 61% in CIFAR-10 classification experiment for VGG-16 and ResNet-18 when the communication with the cloud is done at a low bit rate channel. This gain in the runtime is achieved whilst the accuracy drop is negligible. This method is advantageous for online learning of high-accuracy deep neural networks on lowresource devices such as mobile phones or robots as a part of an edge-cloud system, making them more flexible in facing new tasks and classes of data.
The training phase of deep neural networks requires substantial resources and as such is often performed on cloud servers. However, this raises privacy concerns when the training dataset contains sensitive content, e.g., face images. In this work, we propose a method to perform the training phase of a deep learning model on both an edge device and a cloud server that prevents sensitive content being transmitted to the cloud while retaining the desired information. The proposed privacypreserving method uses adversarial early exits to suppress the sensitive content at the edge and transmits the task-relevant information to the cloud. This approach incorporates noise addition during the training phase to provide a differential privacy guarantee. We extensively test our method on different facial datasets with diverse face attributes using various deep learning architectures, showcasing its outstanding performance. We also demonstrate the effectiveness of privacy preservation through successful defenses against different white-box and deep reconstruction attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.