Three diamine monomers (ethylenediamine, butylenediamine, and p-phenylenediamine) were selected for cross-linking graphene oxide (GO) to prepare composite graphene oxide-framework (GOF) membranes through filtration using a pressure-assisted self-assembly technique. The membranes were applied to separate an ethanol−water mixture by pervaporation. Unmodified GO comprised only hydrogen bonds and π−π interactions, but after cross-linking it with a diamine, attenuated total reflectance−Fourier transform infrared and X-ray photoelectron spectroscopy demonstrated that the diamine was chemically bonded both to GO and the membrane support. Moreover, GO hydrophilicity was substantially altered; water contact angle increased from 24.4°to 80.6°(from cross-linking with an aliphatic structure of diamine to cross-linking with an aromatic structure). Results of X-ray diffraction showed that d-spacing in GOF layers varied from 10.4 to 8.7 Å. For GOFs presoaked in 90 wt % ethanol−water, covalent bonds between the layer and diamine could effectively suppress stretching of d-spacing. Cross-linking with ethylenediamine produced a composite membrane that exhibited a short interlayer dspacing and delivered an excellent pervaporation performance at 80 °C: permeation flux = 2297 g/(m 2 h); water concentration in permeate = 99.8 wt %. The membrane showed stability during a long-term operation at 30 °C for 120 h.
Herbal medicines have recently been recognized as the second most common cause of drug-induced liver injury (DILI) in the United States. However, reliable methods to identify the DILI causality of some herbs, such as Heshouwu (dried root of Polygonum multiflorum), remain lacking. In this study, a total of 12 307 inpatients with liver dysfunction and 147 literature-reported cases of Heshouwu DILI were screened. A general algorithm indicated that only 22.5% (9/40) and 30.6% (45/147) of all hospitalization and literature case reports, respectively, demonstrate the high probability of DILI causality of Heshouwu. By contrast, 95% (19/20) of all cases prospectively investigated by pharmacognosy, phytochemistry, and metabolomic tests exhibited highly probable causality, including a patient who was previously incorrectly attributed and a case that was excluded from Heshouwu causality by pharmacognostic evidence. Toxin (heavy metals, pesticides, and mycotoxins) contamination was also excluded from Heshouwu DILI causality. The objectivity of these screening methods for Heshouwu DILI diagnosis addresses safety concerns regarding stilbene-containing herbal medicines and dietary supplements.
Signals arising from bacterial infections are detected by pathogen recognition receptors (PRRs) and are transduced by specialized adapter proteins in mammalian cells. The Receptor-interacting-serine/threonine-protein kinase 2 (RIPK2 or RIP2) is such an adapter protein that is critical for signal propagation of the Nucleotide-binding-oligomerization-domain-containing proteins 1/2 (NOD1 and NOD2). Dysregulation of this signaling pathway leads to defects in bacterial detection and in some cases autoimmune diseases. Here, we show that the Caspase-activation-and-recruitment-domain (CARD) of RIP2 (RIP2-CARD) forms oligomeric structures upon stimulation by either NOD1-CARD or NOD2-2CARD. We reconstitute this complex, termed the RIPosome in vitro and solve the cryo-EM filament structure of the active RIP2-CARD complex at 4.1 Å resolution. The structure suggests potential mechanisms by which CARD domains from NOD1 and NOD2 initiate the oligomerization process of RIP2-CARD. Together with structure guided mutagenesis experiments at the CARD-CARD interfaces, we demonstrate molecular mechanisms how RIP2 is activated and self-propagating such signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.