The characterization of heart dynamics with a view to distinguish abnormal from normal behavior is an interesting topic in clinical sciences. Here we present an analysis of the Electro-cardiogram (ECG) signals from several healthy and unhealthy subjects using the framework of dynamical systems approach to multifractal analysis. Our analysis differs from the conventional nonlinear analysis in that the information contained in the amplitude variations of the signal is being extracted and quantified. The results thus obtained reveal that the attractor underlying the dynamics of the heart has multifractal structure and the variations in the resultant multifractal spectra can clearly separate healthy subjects from unhealthy ones. We use supervised machine learning approach to build a model that predicts the group label of a new subject with very high accuracy on the basis of the multifractal parameters. By comparing the computed indices in the multifractal spectra with that of beat replicated data from the same ECG, we show how each ECG can be checked for variations within itself. The increased variability observed in the measures for the unhealthy cases can be a clinically meaningful index for detecting the abnormal dynamics of the heart.
Higher Order Spectral (HOS) analysis is often applied effectively to analyze many bio-medical signals to detect nonlinear and non-Gaussian processes. One of the most basic HOS methods is the bispectral estimation, which extracts the degree of quadratic phase coupling between individual frequency components of a nonlinear signal. Most of the studies in this direction as applied to ECG signals are on the conventional, long duration (up to 24 hours) Heart Rate Variability (HRV) data. We report results of our studies on short duration ECG data of 60 seconds using power spectral and bispectral parameters. We analyze 60 healthy cases and 60 cases of patients diagnosed with four different heart diseases, Bundle Branch Block, Cardiomyopathy, Dysrhythmia and Myocardial Infarction. From the power spectra of these data sets we observe that the pulse frequency around 1 Hz has maximum power for all normal ECG data while in all disease cases, the power in the pulse frequency is suppressed and gets distributed among higher frequencies. The bicoherence indices computed show that the pulse frequency has strong quadratic phase coupling with a large number of higher frequencies in healthy cases indicating nonlinearity in the underlying dynamical processes. The loss or decrease of the phase coupling with pulse frequency is a clear indicator of abnormal conditions. In specific cases, bicoherence studies coupled with spectral filter, suggest ECG for Myocardial Infarction has noisy components while in Dysrhythmia, power is mostly at high frequencies with strong quadratic coupling indicating much more irregularity and complexity than normal ECG signals. In addition to serving as indicators suggestive of abnormal conditions of the heart, the detailed analysis presented can lead to a wholistic understanding of normal heart dynamics and its variations during onset of diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.