Vascular calcification (VC) plays as a critical role on cardiovascular disease (CVD) and acts as a notable risk factor in cardiovascular system. Vascular smooth muscle cells (VSMCs) calcification can be triggered by high phosphate treatment; however, the explicit mechanism remains unclear. In the present study, we isolated VSMCs from primary rat artery, applied β‐GP (β‐glycerophosphate) for inducing VSMCs calcification in vitro to explore the mechanism of phosphate‐induced calcification in VSMCs. Alizarin red staining was performed to assess the mineralization in VSMCs. Calcium deposition experiment was taken to evaluate the calcium content. ALP staining was determined to assess the ALP activity. The recombinant adenoviruses were constructed for the overexpression of Klotho and FGF23, respectively. qRT‐PCR and western blot analysis were subjected to measure the expression of Klotho/FGF23 and correlated genes among Wnt7b/β‐catenin pathway. We found that the calcium content was obviously increased and Alizarin red staining was positive in calcification group exposure with high phosphate in a time‐dependent manner. The expression of Klotho and FGF23 was significantly decreased in the calcification group. However, overexpression of Klotho and FGF23 markedly reversed VSMCs calcification stimulating with high phosphate treatment. Moreover, Wnt7b/β‐catenin inhibitor DKK1 could partly attenuate the effect of high phosphate on calcified VSMCs. These findings demonstrated that Klotho/FGF23 axis could modulate high phosphate‐induced VSMCs calcification via Wnt7b/β‐catenin signaling pathway. Our findings unravel that Klotho/FGF23‐ Wnt7b/β‐catenin axis functions as a crucial role in the VSMCs calcification.
Thoracic radiotherapy patients have higher risks of developing radiation-induced heart disease (RIHD). Ionizing radiation generates excessive reactive oxygens species (ROS) causing oxidative stress, while Momordica. charantia and its extract have antioxidant activity. Plant-derived extracellular vesicles (EVs) is emerging as novel therapeutic agent. Therefore, we explored the protective effects of Momordica. charantia-derived EVs-like nanovesicles (MCELNs) against RIHD. Using density gradient centrifugation, we successfully isolated MCELNs with similar shape, size, and markers as EVs. Confocal imaging revealed that rat cardiomyocytes H9C2 cells internalized PKH67 labeled MCELNs time-dependently. In vitro assay identified that MCELNs promoted cell proliferation, suppressed cell apoptosis, and alleviated the DNA damage in irradiated (16 Gy, X-ray) H9C2 cells. Moreover, elevated mitochondria ROS in irradiated H9C2 cells were scavenged by MCELNs, protecting mitochondria function with re-balanced mitochondria membrane potential. Furthermore, the phosphorylation of ROS-related proteins was recovered with increased ratios of p-AKT/AKT and p-ERK/ERK in MCELNs treated irradiated H9C2 cells. Last, intraperitoneal administration of MCELNs mitigated myocardial injury and fibrosis in a thoracic radiation mice model. Our data demonstrated the potential protective effects of MCELNs against RIHD. The MCELNs shed light on preventive regime development for radiation-related toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.