Developing rule extraction algorithms from machine learning techniques such as artificial neural networks and support vector machines (SVMs), which are considered incomprehensible black-box models, is an important topic in current research. This study proposes a rule extraction algorithm from SVMs that uses a kernelbased clustering algorithm to integrate all support vectors and genetic algorithms into extracted rule sets. This study uses measurements of accuracy, sensitivity, specificity, coverage, fidelity and comprehensibility to evaluate the performance of the proposed method on the public credit screening data sets. Results indicate that the proposed method performs better than other rule extraction algorithms. Thus, the proposed algorithm is an essential analysis tool that can be effectively used in data mining fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.