Folate-containing dextran ligand (FA-Dextran-DTPA) was synthesized by the incorporation of diethylenetriaminepentaacetic acid (DTPA) and folate (FA) as a tumor-targeting group into dextran as a polymer carrier. This ligand was further reacted with gadolinium chloride to make a dextran gadolinium complex FA-Dextran-DTPA-Gd. The ligand and its gadolinium complex were characterized by 1 H-NMR, FTIR, UV-Vis, average particle sizes and zeta potential, as well. In vitro properties including relaxivity, cytotoxicity assay, cellular uptake assay, and magnetic resonance imaging (MRI) were also evaluated. Compared with Gd-DTPA, FA-Dextran-DTPA-Gd possessed obviously higher relaxation effectiveness and lower cytotoxicity to HeLa cells. FA-Dextran-DTPA-Gd had a high affinity to the H460 and MDA-MB-231 tumor cells and can be taken up selectively by these tumor cells. Moreover, FA-Dextran-DTPA-Gd showed enhanced signal intensities (SI) of MRI and enhanced the contrast of MR images of tumor cells. These results indicated that FA-Dextran-DTPA-Gd showed the potential as a tumor-targeting contrast agent in MRI.
Isoindoline nitroxide‐containing porphyrins were synthesized by the reaction of 5‐phenyldipyrromethane and 5‐(4′‐nitrophenyl)‐dipyrromethane with 5‐formyl‐1,1,3,3‐tetramethylisoindolin‐2‐yloxyl using the Lindsey method. These spin‐labeled porphyrins were further characterized by MS, UV, FTIR, 1H‐NMR, cyclic voltammetry, electron paramagnetic resonance (EPR), and fluorescence spectroscopy. The electrochemical assay demonstrated that these isoindoline nitroxides‐containing porphyrins had similar electrochemical and redox properties as 5‐carboxy‐1,1,3,3‐tetramethylisoindolin‐2‐yloxyl. Electron paramagnetic resonance test exhibited these porphyrins possessed the hyperfine splittings and characteristic spectra of isoindoline nitroxides, with typical nitroxide g‐values and nitrogen isotropic hyperfine coupling constants. Fluorescence spectroscopy revealed that these porphyrins indicated fluorescence suppression characteristic of nitroxide–fluorophore systems. Moreover, their reduced isoindoline nitroxide‐containing porphyrins eliminated the fluorescence suppression and displayed strong fluorescence. Thus, these isoindoline nitroxide‐containing porphyrins may be considered as the potential fluorescent and EPR probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.