In order to investigate the effect of dietary soybean phospholipid supplement on hepatic and serum indexes relevant to fatty liver hemorrhagic syndrome (FLHS) in layers, 135 300-day-old Hyline Brown layers were randomly divided into three groups (control, pathology and prevention), and each group had 45 layers with three replicates. Birds in the three groups were respectively fed the control diet, high-energy low-protein diet and high-energy high-protein diet affixed with 3% soybean phospholipid instead of maize. Results showed in the 30th day, birds' livers in the pathology group became yellowish, enlarged in size and had hemorrhagic spots, while the prevention and control groups' layers did not have such pathological changes. Contents of triglyceride, total cholesterol, low-density lipoprotein - cholesterol, non-esterified fatty acid and malondialdehyde in serum or liver homogenate in prevention and control groups were remarkably lower than those in the pathology group (P < 0.05 or P < 0.01), as with the activities of glutamic oxalacetic transaminase and glutamic-pyruvic transaminase (P < 0.01); high-density lipoprotein - cholesterol value was strikingly higher than that of the pathology group (P < 0.01). It is suggested dietary soybean phospholipids supplement may effectively improve hepatic and blood indexes relevant to FLHS, which provides a new point for preventing FLHS occurrence rate in laying flocks and treating human non-alcohol fatty liver disease.
BackgroundPulmonary arterial hypertension, also known as Ascites syndrome (AS), remains a clinically challenging disease with a large impact on both humans and broiler chickens. Pulmonary arterial remodeling presents a key step in the development of AS. The precise molecular mechanism of pulmonary artery remodeling regulating AS progression remains unclear.Methodology/Principal FindingsWe obtained pulmonary arteries from two positive AS and two normal broilers for RNA sequencing (RNA-seq) analysis and pathological observation. RNA-seq analysis revealed a total of 895 significantly differentially expressed genes (DEGs) with 437 up-regulated and 458 down-regulated genes, which were significantly enriched to 12 GO (Gene Ontology) terms and 4 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (Padj<0.05) regulating pulmonary artery remodeling and consequently occurrence of AS. These GO terms and pathways include ribosome, Jak-STAT and NOD-like receptor signaling pathways which regulate pulmonary artery remodeling through vascular smooth cell proliferation, inflammation and vascular smooth cell proliferation together. Some notable DEGs within these pathways included downregulation of genes like RPL 5, 7, 8, 9, 14; upregulation of genes such as IL-6, K60, STAT3, STAT5 Pim1 and SOCS3; IKKα, IkB, P38, five cytokines IL-6, IL8, IL-1β, IL-18, and MIP-1β. Six important regulators of pulmonary artery vascular remodeling and construction like CYP1B1, ALDH7A1, MYLK, CAMK4, BMP7 and INOS were upregulated in the pulmonary artery of AS broilers. The pathology results showed that the pulmonary artery had remodeled and become thicker in the disease group.Conclusions/SignificanceOur present data suggested some specific components of the complex molecular circuitry regulating pulmonary arterial remodeling underlying AS progression in broilers. We revealed some valuable candidate genes and pathways that involved in pulmonary artery remodeling further contributing to the AS progression.
To investigate the etiopathogenesis of fatty liver hemorrhagic syndrome (FLHS) and the protective effects of soybean lecithin against FLHS in laying hens, 135 healthy 300-day-old Hyline laying hens were randomly divided into groups: control (group 1), diseased (group 2), and protected (group 3). Each group contained 45 layers with 3 replicates. The birds in these 3 groups were fed a control diet, a high-energy/low-protein (HELP) diet or the HELP diet supplemented with 3% soybean lecithin instead of maize. The fat percent in the liver was calculated. Histopathological changes in the liver were determined by staining, and the mRNA expression levels of apolipoproteinA I (apoA I) and apolipoprotein B100 (apoB100) in the liver were determined by RT-PCR. The results showed that the fat percent in the liver of group 2 was much higher (P < 0.01) than that of group 1 and group 2 on d 30 and 60. The histology of the liver in group 2 on d 30 and 60 displayed various degrees of liver lesions, while the hepatocytes showed a normal structure in group 3 with mild microvesicular steatosis in the liver cell on d 30 and 60. The mRNA expression levels of apoA I and apoB100 in the livers were variable throughout the experiment. The expression level of apoA I in group 2 significantly decreased on d 60 (P < 0.05); the expression level of apoB100 slightly increased on d 30 in group 2, while it sharply decreased on d 60. Compared to group 1, the expression level of apoB100 showed no significant difference in group 3 (P < 0.05). This study indicated that FLHS induced pathological changes and abnormal expression of apoA I and apoB100 in the livers of laying hens and that soybean lecithin alleviated these abnormal changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.