Farming herdsmen, sheep dealers, and veterinarians are increasingly interested in continuously monitoring sheep basic physiological characteristics (such as the heart rate and skin temperature) outside the laboratory environment, with the aim of identifying the physiological links between stress, uncomfortable, excitement, and other pathological states. This paper proposes a non-invasive Wearable Stress Monitoring System (WSMS) with PhotoPlethysmoGram (PPG), Infrared Temperature Measurement (ITM), and Inertial Measurement Units (IMU) that aimed to remotely and continuously monitor the stress signs of sheep during transportation. The purpose of this study was implemented by following the multi-dimensional sensing platform to identify more pressure information. The designed WSMS showed sufficient robustness in recording and transmitting sensing data of physiology and environment during transport. The non-contact and non-destructive monitoring method that was proposed in this paper was helpful in minimizing the effects of sheep stress load.
At present, due to their geographical distribution, environmental conditions and traditional monitoring technologies, the manual inspection of brine pumps in Qinghai Saline Lake can not be effectively carried out in real time, so the pumps have a high failure rate. This has seriously affected the chemical production of this saline lake. The paper designed a remote real-time monitoring terminal and a decision support system based on LoRa technology, GPRS (General Packet Radio Services) remote communication technology and remote-control technology. The system integrated the liquid-level sensing model and the decision support model for brine pump management. The system monitored and analyzed the voltage, current, and liquid-level parameters in real time to determine the operating status or failure of the brine pump. The ID3 (Iterative Dichotomiser 3) method was used to establish the correlation models between the dynamic monitoring information and the brine pump failure, which is the core of the decision support model. The remote controller was implemented to display and control the running status of the brine pumps when the maintenance personnel received the warning information. PHP (Hypertext Preprocessor) language and a MySQL database were implemented to realize the data display, management and decision support system.
The brine mining equipment failure can seriously affect the productivity of the salt lake chemical industry. Traditional monitoring and controlling method mainly depends on manned patrol that is offline and ineffective. With the rapid advancement of information and communication technologies, it is possible to develop more efficient online systems that can automatically monitor and control the mining equipment and to prevent equipment damage from mechanical failure and unexpected interruptions with severe consequences. This paper describes a Wireless Monitoring and feedback fuzzy logic-based Control System (WMCS) for monitoring and controlling the brine well mining equipment. Based on the field investigations and requirement analysis, the WMCS is designed as a Wireless Sensors Network module, a feedback fuzzy logic controller, and a remote communication module together with database platform. The system was deployed in existing brine wells at demonstration area without any physical modification. The system test and evaluation results show that WMCS enables to track equipment performance and collect real-time data from the spot, provides decision support to help workers overhaul the equipment and follows the deployment of fuzzy control in conjunction with remote data logging. It proved that WMCS acts as a tool to improve management efficiency for mining equipment and underground brine resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.