BACKGROUND In patients with or without left bundle branch block, left bundle branch pacing (LBBP) can produce near normalization of QRS duration (QRSd). This has recently emerged as an alternative technique to His bundle pacing.OBJECTIVES The purpose of this study was to characterize a novel approach for LBBP in patients with bradycardia indications for pacing and to assess implant success rate and midterm safety.METHODS Patients with bradycardia indications for pacing underwent LBBP by a trans-ventricular-septal method in the basal ventricular septum. Procedural success, pacing parameters, and complications were assessed at implantation and at 3 months follow-up.RESULTS This prospective study evaluated 87 patients (sinus node dysfunction 67.8%; atrioventricular conduction disease 32.2%) undergoing pacemaker implantation. LBBP implantation succeeded in 80.5% (70/87) of patients and the remaining 17 patients received right ventricular septal pacing. The procedure time of LBBP implantation was 18.0 6 8.8 minutes with a fluoroscopic exposure time of 3.9 6 2.7 minutes. LBBP produced narrower electrocardiographic QRSd than did right ventricular septal pacing (113.2 6 9.9 ms vs 144.4 6 12.8 ms; P , .001). There were no major implantationrelated complications. The pacing threshold was low (0.76 6 0.22 V at implantation and 0.71 6 0.23 V at 3 months), with no loss of capture or lead dislodgment observed.CONCLUSION This study demonstrates that in patients with standard bradycardia pacing indications, LBBP results in QRSd , 120 ms in most patients and can be performed successfully and safely in the majority of patients.
Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea, and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress, respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP), ascorbate peroxidase (APX), inositol-3-phosphate synthase (IPS), and galactinol synthase (GOLS1), showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops.
Aims The present study was to evaluate the feasibility and clinical outcomes of left bundle branch area pacing (LBBAP) in cardiac resynchronization therapy (CRT)-indicated patients. Methods and results LBBAP was performed via transventricular septal approach in 25 patients as a rescue strategy in 5 patients with failed left ventricular (LV) lead placement and as a primary strategy in the remaining 20 patients. Pacing parameters, procedural characteristics, electrocardiographic, and echocardiographic data were assessed at implantation and follow-up. Of 25 enrolled CRT-indicated patients, 14 had left bundle branch block (LBBB, 56.0%), 3 right bundle branch block (RBBB, 12.0%), 4 intraventricular conduction delay (IVCD, 16.0%), and 4 ventricular pacing dependence (16.0%). The QRS duration (QRSd) was significantly shortened by LBBAP (intrinsic 163.6 ± 29.4 ms vs. LBBAP 123.0 ± 10.8 ms, P < 0.001). During the mean follow-up of 9.1 months, New York Heart Association functional class was improved to 1.4 ± 0.6 from baseline 2.6 ± 0.6 (P < 0.001), left ventricular ejection fraction (LVEF) increased to 46.9 ± 10.2% from baseline 35.2 ± 7.0% (P < 0.001), and LV end-diastolic dimensions (LVEDD) decreased to 56.8 ± 9.7 mm from baseline 64.1 ± 9.9 mm (P < 0.001). There was a significant improvement (34.1 ± 7.4% vs. 50.0 ± 12.2%, P < 0.001) in LVEF in patients with LBBB. Conclusion The present study demonstrates the clinical feasibility of LBBAP in CRT-indicated patients. Left bundle branch area pacing generated narrow QRSd and led to reversal remodelling of LV with improvement in cardiac function. LBBAP may be an alternative to CRT in patients with failure of LV lead placement and a first-line option in selected patients such as those with LBBB and heart failure.
BackgroundPlant microRNAs (miRNAs) are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level. Abscisic acid (ABA) is a key signaling molecule that mediates plant stress response by activating many stress-related genes. Although some miRNAs in plants are previously identified to respond to ABA, a comprehensive profile of ABA-responsive miRNAs has not yet been elucidated.ResultsHere, we identified miRNAs responding to exogenous application of ABA, and their predicted target genes in the model plant organism tomato (Solanum lycopersicum). Deep sequencing of small RNAs from ABA-treated and untreated tomatoes revealed that miRNAs can be up- or down-regulated upon treatment with ABA. A total of 1067 miRNAs were detected (including 365 known and 702 candidate novel miRNAs), of those, 416 miRNAs which had an abundance over two TPM (transcripts per million) were selected for differential expression analysis. We identified 269 (180 known and 89 novel) miRNAs that respond to exogenous ABA treatment with a change in expression level of |log2FC|≥0.25. 136 of these miRNAs (90 known and 46 novel) were expressed at significantly different levels |log2FC|≥1 between treatments. Furthermore, stem-loop RT-PCR was applied to validate the RNA-seq data. Target prediction and analysis of the corresponding ABA-responsive transcriptome data uncovered that differentially expressed miRNAs are involved in condition stress and pathogen resistance, growth and development. Among them, approximately 90 miRNAs were predicted to target transcription factors and pathogen resistance genes. Some miRNAs had functional overlap in biotic and abiotic stress. Most of these miRNAs were down-regulated following exposure to exogenous ABA, while their related target genes were inversely up-regulated, which is consistent with their negative regulatory role in gene expression.ConclusionsExogenous ABA application influences the composition and expression level of tomato miRNAs. ABA mainly down-regulates miRNAs that their target genes involve in abiotic stress adaption and disease resistance. ABA might increase expression of stress-related genes via miRNA-mediated posttranscriptional regulation, and our results indicate that ABA treatment has the potential to improve both abiotic stress tolerance and pathogen resistance. This study presents a comprehensive profile of ABA-regulated miRNAs in the tomato, and provides a robust database for further investigation of ABA regulatory mechanisms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2591-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.