In orthopaedic oncology, surgical planning and intraoperative execution errors may result in positive tumor resection margins that increase the risk of local recurrence and adversely affect patients' survival. Computer navigation and 3D-printed resection guides have been reported to address surgical inaccuracy by replicating the surgical plans in complex cases. However, limitations include surgeons' attention shift from the operative field to view the navigation monitor and expensive navigation facilities in computer navigation surgery. Practical concerns are lacking real-time visual feedback of preoperative images and the lead-time in manufacturing 3D-printed objects. Mixed Reality (MR) is a technology of merging real and virtual worlds to produce new environments with enhanced visualizations, where physical and digital objects coexist and allow users to interact with both in real-time. The unique MR features of enhanced medical images visualization and interaction with holograms allow surgeons real-time and on-demand medical information and remote assistance in their immediate working environment. Early application of MR technology has been reported in surgical procedures. Its role is unclear in orthopaedic oncology. This review aims to provide orthopaedic tumor surgeons with up-to-date knowledge of the emerging MR technology. The paper presents its essential features and clinical workflow, reviews the current literature and potential clinical applications, and discusses the limitations and future development in orthopaedic oncology. The emerging MR technology adds a new dimension to digital assistive tools with a more accessible and less costly alternative in orthopaedic oncology. The MR head-mounted display and hand-free control may achieve clinical point-of-care inside or outside the operating room and improve service efficiency and patient safety. However, lacking an accurate hologram-to-patient matching, an MR platform dedicated to orthopaedic oncology, and clinical results may hinder its wide adoption. Industry-academic partnerships are essential to advance the technology with its clinical role determined through future clinical studies.
In orthopedic oncology, computer navigation and 3D-printed guides facilitate precise osteotomies only after surgical exposure. Before surgeries start, it is challenging to mentally process and superimpose the virtual medical images onto patients' anatomy for preoperative surgical planning. Mixed Reality (MR) is an immersive technology merging real and virtual worlds, and users can interact with digital objects in real time. Through Head-Mounted Displays, surgeons directly visualize holographic models that overlaid on tumor patients. The technology may facilitate surgical planning before skin incisions. Methods: Nine bone tumor patients were included (July 2021 -Dec 2022). There were six primary bone sarcomas, two benign bone tumors, and one revision pelvic prosthesis. MR applications were created using patients' preoperative medical images. The surgeon examined each patient clinically using the conventional method of viewing 2D images and MR via HMD, Hololens 2. A Likert-Scale (LS) questionnaire and The National Aeronautics and Space Administration-Task Load Index (NASA-TLX) score were used to evaluate and compare the effectiveness of surgical planning and the surgeon's clinical cognitive workload for the two methods. Results:The qualitative survey of the LS questionnaire suggested that the MR group had superior spatial awareness of tumors and was considered more effective as a preoperative planning tool than the conventional group. For NASA-TLX scores, the overall cognitive workload was lower in MR 3D hologram group than in the 2D Group for preoperative clinical assessment. When using MR technology with HMDs, the surgeon reported no discomfort. Conclusion: MR technology may improve 3D visualization and spatial awareness of bone tumors in patients' anatomies and may facilitate surgical planning before skin incisions in orthopedic oncology surgery. With less cognitive load and better ergonomics, surgeons can focus on patients and surgical tasks with MR technology. Further studies must investigate whether MR technology improves clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.