The role of the PD-1/PD-L pathway in a murine model of tuberculosis remains controversial regarding viral infections and clinical tuberculosis. We conducted a case-control study to investigate the modulating role and mechanism of the PD-1/PD-L pathway in patients with active tuberculosis. Fifty-nine participants, including 43 active tuberculosis (ATB) patients and 16 healthy controls (HC), were enrolled. Cell surface staining and flow cytometry were used to detect the expressions of PD-1 and its ligands on T cells and monocytes. Intracellular cytokine staining was used to determine the PPD-specific IFN-γ-secreting T-cell proportion. CD4+ T-cell proliferation and macrophage functions were investigated in the presence or absence of PD-1/PD-L pathway blockade. Proportions of both PD-1+CD4+ and PD-L1+CD4+ T cells in ATB patients were more significantly increased than in the HC group (P = 0.0112 and P = 0.0141, respectively). The expressions of PD-1, PD-L1, and PD-L2 on CD14+ monocytes in ATB patients were much higher than those in the HC group (P = 0.0016, P = 0.0001, and P = 0.0088, respectively). Blockade of PD-1 could significantly enhance CD4+ T-cell proliferation (P = 0.0433). Phagocytosis and intracellular killing activity of macrophages increased significantly with PD-1/PD-L pathway blockade. In conclusion, the PD-1/PD-L pathway inhibits not only M.tb-specific CD4+ T-cell-mediated immunity but also innate immunity.
BackgroundHumans infected with Mycobacterium tuberculosis (MTB) can delete the pathogen or otherwise become latent infection or active disease. However, the factors influencing the pathogen clearance and disease progression from latent infection are poorly understood. This study attempted to use a genome-wide transcriptome approach to identify immune factors associated with MTB infection and novel biomarkers that can distinguish active disease from latent infection.Methodology/Principal FindingsUsing microarray analysis, we comprehensively determined the transcriptional difference in purified protein derivative (PPD) stimulated peripheral blood mononuclear cells (PBMCs) in 12 individuals divided into three groups: TB patients (TB), latent TB infection individuals (LTBI) and healthy controls (HC) (n = 4 per group). A transcriptional profiling of 506 differentially expressed genes could correctly group study individuals into three clusters. Moreover, 55- and 229-transcript signatures for tuberculosis infection (TB<BI) and active disease (TB) were identified, respectively. The validation study by quantitative real-time PCR (qPCR) performed in 83 individuals confirmed the expression patterns of 81% of the microarray identified genes. Decision tree analysis indicated that three genes of CXCL10, ATP10A and TLR6 could differentiate TB from LTBI subjects. Additional validation was performed to assess the diagnostic ability of the three biomarkers within 36 subjects, which yielded a sensitivity of 71% and specificity of 89%.Conclusions/SignificanceThe transcription profiles of PBMCs induced by PPD identified distinctive gene expression patterns associated with different infectious status and provided new insights into human immune responses to MTB. Furthermore, this study indicated that a combination of CXCL10, ATP10A and TLR6 could be used as novel biomarkers for the discrimination of TB from LTBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.