As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics.ReviewersThis article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor.
Summary
Mobile edge computing is emerging as a novel ubiquitous computing platform to overcome the limit resources of mobile devices and bandwidth bottleneck of the core network in mobile cloud computing. In mobile edge computing, it is a significant issue for cost reduction and QoS improvement to place edge clouds at the edge network as a small data center to serve users. In this paper, we study the edge cloud placement problem, which is to place the edge clouds at the candidate locations and allocate the mobile users to the edge clouds. Specifically, we formulate it as a multiobjective optimization problem with objective to balance the workload between edge clouds and minimize the service communication delay of mobile users. To this end, we propose an approximate approach that adopted the K‐means and mixed‐integer quadratic programming. Furthermore, we conduct experiments based on Shanghai Telecom's base station data set and compare our approach with other representative approaches. The results show that our approach performs better to some extent in terms of workload balance and communication delay and validate the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.