A stochastic fuzzy chance-constrained programming model with multi-objective optimization for coordinated control of power loss and voltage in distribution systems with renewable energy is presented by taking power output of DGs and charging-discharging power of EVs as random fuzzy variables and load power as random variables. Considering the fuzziness and randomness of active power output of distributed generation systems with wind and solar energy and charging power of electric vehicles, the key parameters of probability density function are determined by fitting incomplete data of uncertainties such as wind speed, sunlight intensity and charging power of electric vehicles. According to the principle of random fuzzy compatibility, the probability density function of the uncertainties is transformed into the probability distribution function of the uncertainties. The NDC(Normal Distribution Crossover)-based non-dominated sorting genetic algorithm is used to solve the optimization problem, and the Pareto solution set of the multiobjective optimization problem is obtained. The feasibility and applicability of the proposed model and algorithm are verified by simulating IEEE-33 and IEEE-118 distribution system. INDEX TERMS Distribution system with renewable energy, fuzzy collaborative control of power loss and voltage, non-dominated sorting genetic algorithm with normal distribution crossover, distributed generation, controllable load, electric vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.