The outbreak of a novel corona Virus Disease 2019 in the city of Wuhan, China has resulted in more than 1.7 million laboratory confirmed cases all over the world. Recent studies showed that SARS-CoV-2 was likely originated from bats, but its intermediate hosts are still largely unknown. In this study, we assembled the complete genome of a coronavirus identified in 3 sick Malayan pangolins. The molecular and phylogenetic analyses showed that this pangolin coronavirus (pangolin-CoV-2020) is genetically related to the SARS-CoV-2 as well as a group of bat coronaviruses but do not support the SARS-CoV-2 emerged directly from the pangolin-CoV-2020. Our study suggests that pangolins are natural hosts of Betacoronaviruses. Large surveillance of coronaviruses in pangolins could improve our understanding of the spectrum of coronaviruses in pangolins. In addition to conservation of wildlife, minimizing the exposures of humans to wildlife will be important to reduce the spillover risks of coronaviruses from wild animals to humans. Author summaryRecently, a novel coronavirus, SARS-CoV-2, caused a still ongoing pandemic. Epidemiological study suggested this virus was associated with a wet market in Wuhan, China. However, the exact source of this virus is still unknown. In this study, we attempted to assemble the complete genome of a coronavirus identified from two groups of sick PLOS PATHOGENSMalayan pangolins, which were likely to be smuggled for black market trade. The molecular and evolutionary analyses showed that this pangolin coronavirus we assembled was genetically associated with the SARS-CoV-2 but was not likely its precursor. This study suggested that pangolins are natural hosts of coronaviruses. Determining the spectrum of coronaviruses in pangolins can help understand the natural history of coronaviruses in wildlife and at the animal-human interface, and facilitate the prevention and control of coronavirus-associated emerging diseases.
The effect of transport stress on blood metabolism, glycolytic potential, and meat quality in broilers was investigated. Arbor Acres chicks (n = 360, 1 d old, males) were randomly allotted to 1 of 5 treatments: unstressed control, 45-min (short-term) transport with 45-min (short-term) recovery, 45-min transport with 3-h (long-term) recovery; 3 h (long-term) transport with 45-min recovery, and 3-h transport with 3-h recovery. Each treatment consisted of 6 replicates with 12 birds each. On d 46, all birds (except the control group) were transported according to a designed protocol. Transport time affected plasma glucose level (P<0.05) and glycogen level (P=0.06) in breast muscle as well as the area (P<0.01) and density (P<0.01) of IIa fibers. Glucose concentration increased slightly during the first 45 min of transport and then decreased dramatically in the long-term transported broilers (P<0.05). Long-term transport decreased the concentration of breast glycogen (P=0.06) and affected the size of IIa fibers in tibialis anterior by decreasing the area (P<0.01) with an increase in density (P<0.01). However, a long-term recovery after transport contributed to the homeostasis of blood corticosterone (CORT, P=0.05) and low levels of glycogen (P<0.05), lactate (P<0.01), and glycolytic potential (P<0.01) in thigh muscles. Interactions existed between transport and recovery time on area (P<0.05) and density (P<0.01) of IIa fibers. Furthermore, plasma nonesterified fatty acids increased significantly in the 3-h transport with 3-h recovery group (P<0.05) in comparison with the control. These results suggested that transport induced the release of plasma CORT and glycopenia, which affected the contractive status of muscle fibers by changing their area and density, and enhanced glycolysis and even lipolysis. A long-term recovery after transport was beneficial in lowering plasma CORT levels and reducing muscle glycolysis, which might improve broiler meat quality.
Summary Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l‐galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP‐l‐galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.
We have developed a high-throughput Agrobacterium-mediated transformation model system using both nptII and the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain CP4 (cp4) based selections in MicroTom, a miniature rapid-cycling cherry tomato variety. With the NPTII selection system, transformation frequency calculated as independent transgenic events per inoculated explant ranged from 24 to 80% with an average of 56%, in industrial production scale transformation experiments. For CP4, with glyphosate selection, the average transformation frequency was 57%. Stable transformation frequency was positively correlated with transient expression (R=0.85), and variable with the genes of interest. DNA integration and germline transformation were confirmed by biological assay, Southern Blot analysis, and R(1) phenotype segregation. Transgene expression was observed in leaf, root, stem, flower, and fruit tissues of the transgenic plants. Ninety-five percent of transgenic events coexpressed two introduced genes based on beta-glucuronidase (GUS) and neonmycin phosphotransferase II (NPTII) expression. Seventy-five percent of transgenic events contained one to two copies of the introduced uidA (GUS) gene based on Southern analysis. Transgenic plants from the cotyledon explants to the transgenic plants transferred to soil were produced within about 2-3 months depending on the genes of interest. The utility of this MicroTom model transformation system for functional genomic studies, such as identification of genes related to important agricultural traits and gene function, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.