Abstract-Hibernating myocardium refers to chronically dysfunctional myocardium in patients with coronary artery disease in which cardiac viability is maintained and whose function improves after coronary revascularization. It is our hypothesis that long-term adaptive genomic mechanisms subtend the survival capacity of this ischemic myocardium. Therefore, the goal of this study was to determine whether chronic repetitive ischemia elicits a gene program of survival protecting hibernating myocardium against cell death. Accordingly, we measured the expression of survival genes in hibernating myocardium, both in patients surgically treated for hibernation and in a chronic swine model of repetitive ischemia reproducing the features of hibernation. Human hibernating myocardium was characterized by an upregulation of genes and corresponding proteins involved in anti-apoptosis (IAP), growth (VEGF, H11 kinase), and cytoprotection (HSP70, HIF-1␣, GLUT1). In the swine model, the same genes and proteins were upregulated after repetitive ischemia, which was accompanied by a concomitant decrease in myocyte apoptosis. These changes characterize viable tissue, because they were not found in irreversibly injured myocardium. Our report demonstrates a novel mechanism by which the activation of an endogenous gene program of cell survival underlies the sustained viability of the hibernating heart. Potentially, promoting such a program offers a novel opportunity to salvage postmitotic tissues in conditions of ischemia. Key Words: gene expression Ⅲ coronary artery disease Ⅲ ischemia Ⅲ stunning Ⅲ hibernation B ecause the cardiac myocyte has a limited capacity for regeneration, most forms of heart disease, including ischemic heart disease and heart failure, are characterized by a loss of cardiomyocytes. 1-3 Historically, any evidence of prolonged left ventricular dysfunction after myocardial ischemia was thought to be caused by irreversible myocyte damage. This traditional concept was challenged with the discoveries of myocardial stunning (in which ischemia is followed by prolonged but fully reversible dysfunction), 4 ischemic preconditioning (in which a brief ischemic episode protects the myocardium against a subsequent episode of sustained ischemia), 5 and hibernating myocardium (in which chronic dysfunction resulting from repeated ischemia recedes after bypass revascularization). 6,7 Hibernating myocardium is submitted to repetitive bouts of ischemia caused by normally occurring increases in myocardial metabolic demand in the face of significant coronary stenosis and limited coronary reserve, yet it does not develop irreversible damage. 8,9 The diagnosis of this condition is of the highest priority in patients with chronic coronary artery disease, because successful coronary revascularization and restoration of coronary flow reserve in hibernating myocardium are followed by an improvement of contractile performance; 10,11 however, if left untreated, this condition leads to progressive exacerbation of heart failure and death.Despite t...
Regenerative medicine treatments that combine the use of cells and materials may open new options for tissue/organ repair and regeneration. The microenvironment of mesenchymal stem cells (MSCs) strictly regulates their self-renewal and functions. In this study, when rat bone marrow derived MSCs (rBMSCs) and rat adipose tissue derived MSCs (rAMSCs) in passages 2-4 were cultured on different substrates, they presented the cellular functions to be dependent of substrate stiffness. The cells attached better on the softer substrate than on the stiffer one. The substrate stiffness had no significant influence on the proliferation of those cells. However, the substrate stiffness significantly promoted the osteogenic differentiation of the two kinds of stem cells. Furthermore, rBMSCs cultured on the same stiffness expressed more osteoblast-related markers than rAMSCs. In addition, combined biomaterials and biochemical reagents treatment yielded a stronger effect on osteogenic differentiation of MSCs than either treatment alone. These results have significant implications for further extending our capabilities in engineering functional tissue substitutes.
Mesenchymal stem cells (MSCs) are a potential source of material for the generation of tissue-engineered cardiac grafts because of their ability to transdifferentiate into cardiomyocytes after chemical treatments or co-culture with cardiomyocytes. Cardiomyocytes in the body are subjected to cyclic strain induced by the rhythmic heart beating. Whether cyclic strain could regulate rat bone marrow derived MSC (rBMSC) differentiation into cardiomyocyte-like lineage was investigated in this study. A stretching device was used to generate the cyclic strain for rBMSCs. Cardiomyogenic differentiation was evaluated using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), immunocytochemistry and western-blotting. The results demonstrated that appropriate cyclic strain treatment alone could induce cardiomyogenic differentiation of rBMSCs, as confirmed by the expression of cardiomyocyte-related markers at both mRNA and protein levels. Furthermore, rBMSCs exposed to the strain stimulation expressed cardiomyocyte-related markers at a higher level than the shear stimulation. In addition, when rBMSCs were exposed to both strain and 5-azacytidine (5-aza), expression levels of cardiomyocyte-related markers significantly increased to a degree suggestive of a synergistic interaction. These results suggest that cyclic strain is an important mechanical stimulus affecting the cardiomyogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.