Insulin secretion is initiated by activation of voltage-gated Ca2+ channels (VGCC) to trigger Ca2+-mediated insulin vesicle fusion with the β-cell plasma membrane. The firing of VGCC requires β-cell membrane depolarization, which is regulated by a balance of depolarizing and hyperpolarizing ionic currents. Here, we show that SWELL1 mediates a swell-activated, depolarizing chloride current (ICl,SWELL) in both murine and human β-cells. Hypotonic and glucose-stimulated β-cell swelling activates SWELL1-mediated ICl,SWELL and this contributes to membrane depolarization and activation of VGCC-dependent intracellular calcium signaling. SWELL1 depletion in MIN6 cells and islets significantly impairs glucose-stimulated insulin secretion. Tamoxifen-inducible β-cell-targeted Swell1 KO mice have normal fasting serum glucose and insulin levels but impaired glucose-stimulated insulin secretion and glucose tolerance; and this is further exacerbated in mild obesity. Our results reveal that β-cell SWELL1 modulates insulin secretion and systemic glycaemia by linking glucose-mediated β-cell swelling to membrane depolarization and activation of VGCC-triggered calcium signaling.
Transient receptor potential melastatin-7 (TRPM7) channels have been recently reported in human atrial fibroblasts and are believed to mediate fibrogenesis in human atrial fibrillation. The present study investigates whether TRPM7 channels are expressed in human atrial myocytes using whole-cell patch voltage-clamp, RT-PCR and Western blotting analysis. It was found that a gradually activated TRPM7-like current was recorded with a K+- and Mg2+-free pipette solution in human atrial myocytes. The current was enhanced by removing extracellular Ca2+ and Mg2+, and the current increase could be inhibited by Ni2+ or Ba2+. The TRPM7-like current was potentiated by acidic pH and inhibited by La3+ and 2-aminoethoxydiphenyl borate. In addition, Ca2+-activated TRPM4-like current was recorded in human atrial myocytes with the addition of the Ca2+ ionophore A23187 in bath solution. RT-PCR and Western immunoblot analysis revealed that in addition to TRPM4, TRPM7 channel current, mRNA and protein expression were evident in human atrial myocytes. Interestingly, TRPM7 channel protein, but not TRPM4 channel protein, was significantly increased in human atrial specimens from the patients with atrial fibrillation. Our results demonstrate for the first time that functional TRPM7 channels are present in human atrial myocytes, and the channel expression is upregulated in the atria with atrial fibrillation.
Obesity is associated with a loss of insulin-sensitivity and systemic dysglycemia, resulting in Type 2 diabetes, however the molecular mechanisms underlying this association are unclear. Through adipocyte patch-clamp studies, we recently showed that SWELL1 is required for the Volume-Regulated Anion Current (VRAC) in adipocytes and that SWELL1-mediated VRAC is activated by both mechanical and pathophysiological adipocyte expansion. We also demonstrated that adipocyte SWELL1 is required for maintaining insulin signaling and glucose homeostasis, particularly in the setting of obesity. Here we show that SWELL1 protein expression is induced in subcutaneous fat, visceral fat and liver in the setting of obesity. Long- term AAV/rec2-shRNA mediated SWELL1 knock-down in both fat and liver are associated with increased weight gain, increased adiposity and exacerbated insulin resistance in mice raised on a high-fat diet. These data further support the notion that SWELL1 induction occurs in insulin- sensitive tissues (liver and adipose) in the setting of over-nutrition and contributes to improved systemic glycemia by supporting enhanced insulin-sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.