Most multi-object tracking methods have achieved good results in tracking multiple pedestrians with Kalman filter, but their tracking performance in crowded scenes is still poor due to pedestrian avoidance and frequent occlusion. In crowded scenes, the pedestrian trajectory prediction with Kalman filter alone is unreliable. In this paper, a two-dimensional field-of-view avoidance force model (AFM) is proposed to assist the Kalman filter prediction by sensing the avoidance force and then complete pedestrian tracking. In the model, each pedestrian has a two-dimensional field of view to perceive the avoidance force, which determines the next predicted trajectory. In real scenes, pedestrians tend to be more concerned about the surrounding area, so different areas are set to simulate the attention mechanisms of pedestrians in real scenes. In the FairMOT model, AFM is used to optimize the pedestrian state values of Kalman filter prediction and the optimized model is trained on the MOT16 public dataset. The experimental results on the MOT20 benchmark dataset show that compared with the mainstream tracking model FairMOT, our method respectively improves MOTA by 2.7% and IDF1 by 2.2%. Our method also achieves the good performance on MOT15, MOT16, and MOT17 tracking benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.