We investigate a scalable M -channel critically sampled filter bank for graph signals, where each of the M filters is supported on a different subband of the graph Laplacian spectrum. For analysis, the graph signal is filtered on each subband and downsampled on a corresponding set of vertices. However, the classical synthesis filters are replaced with interpolation operators. For small graphs, we use a full eigendecomposition of the graph Laplacian to partition the graph vertices such that the m th set comprises a uniqueness set for signals supported on the m th subband. The resulting transform is critically sampled, the dictionary atoms are orthogonal to those supported on different bands, and graph signals are perfectly reconstructable from their analysis coefficients. We also investigate fast versions of the proposed transform that scale efficiently for large, sparse graphs. Issues that arise in this context include designing the filter bank to be more amenable to polynomial approximation, estimating the number of samples required for each band, performing non-uniform random sampling for the filtered signals on each band, and using efficient reconstruction methods. We empirically explore the joint vertex-frequency localization of the dictionary atoms, the sparsity of the analysis coefficients for different classes of signals, the reconstruction error resulting from the numerical approximations, and the ability of the proposed transform to compress piecewise-smooth graph signals. The proposed filter bank also yields a fast, approximate graph Fourier transform with a coarse resolution in the spectral domain.
The Latin square completion (LSC) problem involves completing a partially filled Latin square of order n by assigning numbers from 1 to n to the empty grids such that each number occurs exactly once in each row and each column. LSC has numerous applications and is, however, NP-complete. In this paper, we investigate an approach for solving LSC by converting an LSC instance to a domain-constrained Latin square graph and then solving the associated list coloring problem. To be effective, we first employ a constraint propagation-based kernelization technique to reduce the graph model and then call for a dedicated memetic algorithm to find a legal list coloring. The population-based memetic algorithm combines a problem-specific crossover operator to generate meaningful offspring solutions, an iterated tabu search procedure to improve the offspring solutions, and a distance-quality-based pool updating strategy to maintain a healthy diversity of the population. Extensive experiments on more than 1800 LSC benchmark instances in the literature show that the proposed approach can successfully solve all the instances, surpassing the state-of-the-art methods. To our knowledge, this is the first approach achieving such a performance for the considered problem. We also report computational results for the related partial Latin square extension problem.
Given an undirected graph G, the Minimum Sum Coloring problem (MSCP) is to find a legal assignment of colors (represented by natural numbers) to each vertex of G such that the total sum of the colors assigned to the vertices is minimized. This paper presents a memetic algorithm for MSCP based on a tabu search procedure with two neighborhoods and a multi-parent crossover operator. Experiments on a set of 77 well-known DIMACS and COLOR 2002-2004 benchmark instances show that the proposed algorithm achieves highly competitive results in comparison with five state-of-the-art algorithms. In particular, the proposed algorithm can improve the best known results for 17 instances. We also provide upper bounds for 18 additional instances for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.