The study aimed to evaluate the influences of the dietary supplementation of Chinese yam polysaccharide (CYP) on the carcass performance, antioxidant capacity, and meat quality of broilers. Three hundred and sixty healthy 1-day-old broilers with similar body weight (39 ± 1 g, gender balanced) were randomly divided into four groups (control, CYP1, CYP2, and CYP3 groups). In the control group, broilers were fed a basal diet with CYP, and the CYP1, CYP2, and CYP3 groups were fed diets supplemented with 250, 500, and 1000 mg/kg CYP, respectively. There were three replicates in each group, 30 birds in each replicate, and the feeding trial lasted for 48 days. Statistical analysis was performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) by one-way analysis of variance. The results showed that compared with the control group, dietary supplementation with 500 mg/kg CYP can improve live weight, half-eviscerated carcass percentage, eviscerated carcass percentage, and thigh muscle percentage. Moreover, dietary supplementation with 500 mg/kg CYP can improve the contents of total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GPX), and glutathione s-transferase (GST) in serum (p < 0.05). Meanwhile, the mRNA expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), quinone oxidoreductase (NQO1), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), and catalase (CAT) in the liver; the mRNA expression levels of HO-1, NQO1, GPX1, and CAT in the breast muscle; and the mRNA expression levels of NQO1, SOD1, and CAT in the thigh muscle of broilers in the CYP2 group were significantly increased (p < 0.05). In addition, the yellowness and shear force of the thigh and breast muscles and the content of malondialdehyde (MDA) in the serum of broilers in the control group were higher than that in the CYP2 groups (p < 0.05). The results demonstrated that the CYP2 group had the best effect on improving meat quality. In conclusion, dietary supplementation with 500 mg/kg CYP can improve the meat quality of broilers by improving carcass quality, meat color, shear force, and antioxidant capacity.
The purpose of this study is to evaluate the influences of Chinese yam polysaccharide (CYP) dietary supplementation on the composition of intramuscular fat (IMF) and fatty acids (FA) in thigh and breast muscles of broilers. Three hundred and sixty healthy one-day-old broilers (the breed of Crossbred chicken is named 817) with gender-balanced and similar body weight (39 ± 1 g) were randomly allocated into four groups (control, CYP1, CYP2, and CYP3 groups). Broilers in the control group were only fed a basal diet, and broilers in CYP1 group were fed the same diets further supplemented with 250 mg/kg CYP, the CYP2 group was fed the same diets further supplemented with 500 mg/kg CYP, and the CYP3 group was fed the same diets further supplemented with 1000 mg/kg CYP, respectively. Each group consisted of three replicates and each replicate consisted of 30 birds. The feeding days were 48 days. The results observed that the CYP2 group (500 mg/kg) can up-regulate the mRNA expression levels of β-catenin in thigh muscle compared to the control group. At the same time, all CYP groups (CYP1, CYP2, and CYP3 groups) can up-regulate mRNA expression of Wnt1 and β-catenin in breast muscle, while mRNA expression of PPARγ and C/EBPα in breast and thigh muscles could be down-regulated (p < 0.05). In summary, 500 mg/kg of CYP dietary supplementation can reduce IMF content and improve the FAs composition, enhancing the nutritional value of chicken meat.
Chinese yam polysaccharide (CYP) has received attention in recent years owing to its positive nutritional and medicinal characteristics. Copper is an essential trace metal in animals, which plays an important role in iron absorption and hemoglobin synthesis. However, no published study has evaluated Chinese yam polysaccharide copper complex (CYP-Cu) as a dietary additive in broilers. This study was conducted to investigate the effects of dietary CYP-Cu on growth performance, immunity, and oxidative resistance in broilers. A total of 360 1-day-old 817 broiler chickens were randomly divided into 4 groups, with 3 replicates of 30 birds each and were fed a basal diet with the addition of 0 (control group), 0.02, 0.10, and 0.50 g/kg CYP-Cu. The feeding trial lasted 48 days. On day 28 and day 48, 6 broilers in each group were slaughtered, respectively. Then the parameters of growth and carcass, serum biochemistry, immunity, and antioxidation, and the expression level of hepatic antioxidative genes were investigated. The results showed that compared with the control group, the supplementation of dietary CYP-Cu could improve the indexes of the growth, carcass, serum biochemistry, immunity and oxidation resistance in broilers, such as average daily gain (ADG), the slaughter percentage (SP), semi-evisceration weight percentage (SEWP), eviscerated carcass weight percentage (EWP), breast muscle percentage (BMP), leg muscle percentage (LMP), serum albumin (ALB), high density lipoprotein (HDL), insulin-like growth factor I (IGF-I), triiodothyronine (T3), thyroxine (T4), growth hormone (GH), insulin (INS), immunoglobulin M (IgM), immunoglobulin G (IgG), immunoglobulin A (IgA), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 6 (IL-6), complement 3 (C3), complement 4 (C4), total superoxide dismutase (T-SOD), total antioxidative capacity (T-AOC), glutathione peroxidase (GSH-Px), and glutathione s-transferase (GSH-ST); these parameters in the 0.10 g/kg CYP-Cu treated group were significantly increased (P < 0.05) in the total trial period, with the exceptions that feed conversion ratio (FCR) and serum low density lipoprotein (LDL), malondialdehyde (MDA) were decreased in the total trial period. In addition, the antioxidative gene mRNA expression of Nuclear factor E2-related factor 2 (Nrf2), Superoxide dismutase 1 (SOD1), Superoxide dismutase 2 (SOD2), and Catalase (CAT) were upregulated in the liver (P < 0.05). These results indicated that the supplementation of dietary CYP-Cu improved the growth, immunity, and oxidation resistance of broilers, and the addition of 0.10 g/kg CYP-Cu in broiler diets is recommended, which suggests that CYP-Cu may be a promising green feed additive in the poultry industry.
This experiment was conducted to evaluate the effects of dietary Chinese yam polysaccharides (CYP) on myogenic differentiation 1 (MYOD1), myogenin (MYOG), and myostatin (MSTN) mRNA expression of breast and thigh muscle tissues in broilers. A total of 360 (1-day-old, gender-balanced) crossbred broilers chicks with similar body weight (BW) were randomly distributed into four groups, with three replicates in each group and each replicate included 30 broilers. The feeding trial lasted for 48 days. Experimental broilers were fed 0.00 mg/kg basal diet (control group), 250 mg/kg, 500 mg/kg, and 1000 mg/kg CYP, respectively. The results showed that CYP250 and CYP500 groups had higher thigh muscle percentage (TMP) compared to the control group (p < 0.05). Meanwhile, the expression of MYOD1, MYOG mRNA in breast muscle tissues of CYP500 and CYP1000 groups was higher (p < 0.05), and the expression of MSTN mRNA in thigh muscle of CYP250, CYP500, and CYP1000 groups was lower than that of the control group (p < 0.05). In addition, there was no significant difference in the expression of MYOD1 mRNA in the thigh muscle tissue of each group (p > 0.05). Bivariate correlation analysis showed that the expression levels of MYOD1, MYOG, and MSTN mRNA in the thigh muscle tissue of broiler chickens in the CYP500 group were positively correlated with TMP. However, the expression of MYOG mRNA in thigh muscle tissue of the CYP1000 group was negatively correlated with TMP. In general, this study indicated that appropriate dietary CYP supplementation influenced the growth and development of thigh muscle tissue in broilers by altering TMP and muscle tissue development-related genes expression. Therefore, CYP could be used as a potential feed additive to promote the development of muscle tissues in broilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.