This paper presents details of a study that deals with determination of engineering properties, identification of phases of major hydration products, and microstructural characteristics of a zinc-contaminated (referred to as Zn-contaminated in this paper) kaolin clay when it is stabilized by a cement additive. Investigations were carried out with respect to the effect of the level of zinc (Zn) concentration on the overall soil properties including Atterberg limits, water content, pH, stress–strain characteristics, unconfined compressive strength, and secant modulus. In addition, X-ray diffraction, scanning electron microscopy, and mercury intrusion porosimetry studies were conducted to understand the mechanisms controlling the changes in engineering properties of the stabilized kaolin clay. The study reveals that the level of Zn concentration has a considerable influence on the engineering properties, phases of hydration products formed, and microstructural characteristics of the stabilized kaolin clay. These changes are attributed to the retardant effect of Zn on the hydration and pozzolanic reactions, which in turn alters the phases of hydration products and cementation structure – bonding of the soils. Theoretical simulation of the pore-size distribution curves demonstrates that the cement-stabilized kaolin exhibits bimodal type when the Zn concentration is less than 2%, whereas it displays unimodal type when the Zn concentration is 2%. With an increase in the Zn concentration, the characteristics of the interaggregate pores in terms of volume and mean diameter change considerably, whereas those of intra-aggregate pores remain nearly unchanged.
Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg(-1), with a mean of 0.64 mg kg(-1), of which 57.5% exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4%. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg(-1), with a mean of 0.24 mg kg(-1). A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r = 0.770, ρ < 0.01). (2) Cd content in the rice produced in Y county ranges from 0.01 to 2.77 mg kg(-1), with a mean of 0.46 mg kg(-1). The rate of rice with Cd exceeding the allowable limit specified by the Chinese Grain Security Standards reaches 59.6%; that with Cd exceeding 1 mg kg(-1), called as "Cd rice," reaches 11.1%. (3) Cd content in the rice of Y county is positively significantly correlated with HCl-Cd (r = 0.177, ρ < 0.05) but not significantly with T-Cd in the soils (r = 0.091, ρ > 0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day(-1) person(-1) on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.