CuS and Cu1.8S have been investigated respectively as anodes of lithium-ion batteries because of their abundant resources, no environment pollution, good electrical conductivity, and a stable discharge voltage plateau. In this work, CuS/Cu1.8S nanocomposites were firstly prepared simultaneously by the one-pot synthesis method at a relatively higher reaction temperature 200 °C. The CuS/Cu1.8S nanocomposites anodes exhibited a high initial discharge capacity, an excellent reversible rate capability, and remarkable cycle stability at a high current density, which could be due to the nano-size of the CuS/Cu1.8S nanocomposites and the assistance of Cu1.8S. The high electrochemical performance of the CuS/Cu1.8S nanocomposites indicated that the CuxS nanomaterials will be a potential lithium-ion battery anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.