Circular RNAs (circRNAs) represent a class of widespread and diverse endogenous RNAs that may regulate gene expression in eukaryotes. However, the regulation and function of human circRNAs remain largely unknown. Here we generate ribosomal-depleted RNA sequencing data from six normal tissues and seven cancers, and detect at least 27,000 circRNA candidates. Many of these circRNAs are differently expressed between the normal and cancerous tissues. We further characterize one abundant circRNA derived from Exon2 of the HIPK3 gene, termed circHIPK3. The silencing of circHIPK3 but not HIPK3 mRNA significantly inhibits human cell growth. Via a luciferase screening assay, circHIPK3 is observed to sponge to 9 miRNAs with 18 potential binding sites. Specifically, we show that circHIPK3 directly binds to miR-124 and inhibits miR-124 activity. Our results provide evidence that circular RNA produced from precursor mRNA may have a regulatory role in human cells.
Exosomes, which are nanosized endocytic vesicles that are secreted by most cells, contain an abundant cargo of different RNA species that can modulate the behavior of recipient cells and may be used as circulating biomarkers for diseases. Here, we develop a web-accessible database (http://www.exoRBase.org), exoRBase, which is a repository of circular RNA (circRNA), long non-coding RNA (lncRNA) and messenger RNA (mRNA) derived from RNA-seq data analyses of human blood exosomes. Experimental validations from the published literature are also included. exoRBase features the integration and visualization of RNA expression profiles based on normalized RNA-seq data spanning both normal individuals and patients with different diseases. exoRBase aims to collect and characterize all long RNA species in human blood exosomes. The first release of exoRBase contains 58 330 circRNAs, 15 501 lncRNAs and 18 333 mRNAs. The annotation, expression level and possible original tissues are provided. exoRBase will aid researchers in identifying molecular signatures in blood exosomes and will trigger new exosomal biomarker discovery and functional implication for human diseases.
Epstein-Barr virus (EBV) is causally associated with nasopharyngeal carcinoma, 10% of gastric carcinoma and various B cell lymphomas . EBV infects both B cells and epithelial cells . Recently, we reported that epidermal growth factor and Neuropilin 1 markedly enhanced EBV entry into nasopharyngeal epithelial cells . However, knowledge of how EBV infects epithelial cells remains incomplete. To understand the mechanisms through which EBV infects epithelial cells, we integrated microarray and RNA interference screen analyses and found that Ephrin receptor A2 (EphA2) is important for EBV entry into the epithelial cells. EphA2 short interfering RNA knockdown or CRISPR-Cas9 knockout markedly reduced EBV epithelial cell infection, which was mostly restored by EphA2 complementary DNA rescue. EphA2 overexpression increased epithelial cell EBV infection. Soluble EphA2 protein, antibodies against EphA2, soluble EphA2 ligand EphrinA1, or the EphA2 inhibitor 2,5-dimethylpyrrolyl benzoic acid efficiently blocked EBV epithelial cell infection. Mechanistically, EphA2 interacted with EBV entry proteins gH/gL and gB to facilitate EBV internalization and fusion. The EphA2 Ephrin-binding domain and fibronectin type III repeats domain were essential for EphA2-mediated EBV infection, while the intracellular domain was dispensable. This is distinct from Kaposi's sarcoma-associated herpesvirus infection through EphA2 . Taken together, our results identify EphA2 as a critical player for EBV epithelial cell entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.