Summary
We leveraged IDH wild-type glioblastomas, derivative neurospheres, and single cell gene expression profiles to define three tumor-intrinsic transcriptional subtypes designated as proneural, mesenchymal, and classical. Transcriptomic subtype multiplicity correlated with increased intratumoral heterogeneity and presence of tumor microenvironment. In silico cell sorting identified macrophages/microglia, CD4+ T lymphocytes, and neutrophils in the glioma microenvironment. NF1 deficiency resulted in increased tumor-associated macrophages/microglia infiltration. Longitudinal transcriptome analysis showed that expression subtype is retained in 55% of cases. Gene signature-based tumor microenvironment inference revealed a decrease in invading monocytes and a subtype-dependent increase in macrophages/microglia cells upon disease recurrence. Hypermutation at diagnosis or at recurrence associated with CD8+ T cell enrichment. Frequency of M2 macrophages detection associated with short-term relapse after radiation therapy.
A large number of cis-regulatory sequences have been annotated in the human genome1,2, but defining their target genes remains a challenge3. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C) based techniques4. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here, we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C)5. We determined over one million long-range chromatin interactions at 5–10kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts upon TNF-α signaling in these cells. Unexpectedly, we found that TNF-α responsive enhancers are already in contact with their target promoters prior to signaling. Such pre-existing chromatin looping, which also exists in other cell types with different extra-cellular signaling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is rather stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.
PINK1 phosphorylates ubiquitin, which then binds to Parkin and activates its E3 ligase activity, leading to induction of selective autophagy of damaged mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.