Individuals with the neurofibromatosis 1 (NF1) tumor predisposition syndrome develop low-grade pilocytic astrocytomas at an increased frequency. Previously, we demonstrated that astrocytes from mice heterozygous for a targeted mutation in the Nf1 gene (Nf1+/- astrocytes) exhibit a cell autonomous growth advantage associated with increased RAS pathway activation. In this report, we extend our initial characterization of the effect of reduced Nf1 gene expression on astrocyte function by demonstrating that Nf1+/- astrocytes exhibit decreased cell attachment, actin cytoskeletal abnormalities during the initial phases of cell spreading, and increased cell motility. Whereas these cytoskeletal abnormalities were also observed in Nf1-/- astrocytes, astrocytes expressing a constitutively active RAS molecule showed increased cell motility and abnormal actin cytoskeleton organization during cell spreading, but exhibited normal cell attachment. Based on ongoing gene expression profiling experiments on human astrocytoma tumors, we demonstrate increased expression of two proteins implicated in cell attachment, spreading and motility (GAP43 and T-cadherin) in Nf1+/- and Nf1-/- astrocytes. These results support the emerging notion that tumor suppressor gene heterozygosity results in abnormalities in cell function that may contribute to the pathogenesis of non-tumor phenotypes in NF1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.