In this study, the non-dominated sorting genetic algorithm II (NSGA-II) is used to optimize the annual phase arrangement of distribution transformers connected to primary feeders to improve three-phase imbalance and reduce power loss. Based on the data of advanced metering infrastructure (AMI), a quasi-real-time ZIP load model and typical sample distribution systems in Taiwan are constructed. The equivalent circuit models and solution algorithms for typical distribution systems in Taiwan are built using the commercial software package MATLAB. A series of simulations, analyses, comparisons, and explorations is executed. Finally, the quantitative evaluation results for improving the voltage imbalance and reducing the power loss are summarized. For the series of studies, the percentage reductions in (1) total power imbalance TSI, (2) total line loss TLL, (3) average voltage drop AVD, (4) total voltage imbalance factors for zero/negative sequences Td0/Td2, and (5) neutral current of the main transformer ILCO are up to 45.48%, 4.06%, 16.61%, 63.99%, 21.33%, and 88.01%, respectively. The results obtained in this study can be applied for energy saving and can aid the authorities to implement sustainable development policies in Taiwan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.