PurposeThis study aimed to determine the composition and diversity of bacterial communities on the ocular surface before and after the intervention with sodium hyaluronate eye drops (with or without preservatives) using 16S rRNA gene amplicon sequencing.MethodsSixteen healthy adults were randomly divided into two groups and treated with sodium hyaluronate eye drops with or without preservatives for 2 weeks. The individuals used the same artificial tears in both eyes. The microbial samples from the conjunctival sac of each participant were collected at baseline and 2 weeks after intervention. The diversity and taxonomic differences among different groups before and after intervention were compared by sequencing the V3–V4 region of the 16S rRNA gene.ResultsThe similarity in the binocular microbial community was high in 1 of the 16 volunteers (Bray-Curtis dissimilarity score < 0.3). At the genus level, 11 bacteria were detected in all samples with an average relative abundance of more than 1%. The bacterial community changed significantly after the use of sodium hyaluronate eye drops (with or without preservatives), whether within individuals or between individuals in different groups (P < 0.05, PERMANOVA). Different dosage forms of sodium hyaluronate eye drops significantly decreased the relative abundance of Flavobacterium caeni and Deinococcus antarcticus, respectively (P < 0.05).ConclusionsHealthy people had a rich diversity of the bacterial microbiota on the ocular surface, but the bacterial communities between the eyes were not completely similar. Irrespective of containing benzalkonium chloride (BAC), sodium hyaluronate eye drops can change the bacterial community on the ocular surface.
Purpose. To investigate the changes of corneal endothelium under different crosslinking conditions and the protective effect of ripasudil. Methods. Corneal crosslinking groups were infiltrated with riboflavin and subsequently irradiated with 0.54 J/cm2 or 1.08 J/cm2 UVA, while noncrosslinking groups included neither UVA nor riboflavin treatment, only 1.08 J/cm2 UVA and only riboflavin treatment. Corneal opacity, variations in corneal endothelial cells, and corneal thickness of all groups were observed by slit lamp, in vivo confocal microscopy, and optical coherence tomography. Immunofluorescence staining and scanning electron microscopy were performed to evaluate changes in the structure and function of the corneal endothelium. The mice that received a corneal crosslinking dose of 1.08 J/cm2 were instilled with ripasudil to explore its protective effect on the corneal endothelium. Results. Treatment with UVA and riboflavin caused an increase in corneal opacity and corneal thickness and decreased endothelial cell density. Furthermore, treatment with UVA and riboflavin caused endothelial cell DNA damage and destroyed the tight junction and pump function of the endothelium, while riboflavin or the same dose of UVA alone did not affect the endothelium. Ripasudil reduced DNA damage in endothelial cells, increased the density of cells, and protected the endothelium’s integrity and function. Conclusion. Riboflavin combined with UVA can damage the corneal endothelium’s normal functioning. The corneal endothelium’s wound healing is dose-dependent, and the ROCK inhibitor ripasudil maintains the endothelium’s pump and barrier functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.