We present a method to fabricate superhydrophobic surfaces on copper substrate using reciprocating type high speed wire cut electrical discharge machining (HS-WEDM) and self-assembly technology. Herein, single factor experiment was used to investigate the influence of several major parameters of the wire electrical discharge machining processing, such as pulse width, pulse gap (pulse interval) and power tube, on the contact angle of resulting surface. Results show that a composite structure, composed of craters and projections, is fabricated on the copper surface, which is the key reason of superhydrophobicity. With the change of pulse width, pulse interval, and the number of the power tube, the hydrophobic properties of resulting copper surface was changed. This paper provided the theoretical support for industrialized fabrications of super-hydrophobic brass surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.