The NONO (non-POU domain-containing octamer-binding protein) protein, also known as 54 kD nuclear RNA-and DNA-binding protein (p54nrb), belongs to the multifunctional DBHS (Drosophila behaviour/human splicing) family of proteins which can bind DNA, RNA and protein. 1 NONO has a nuclear localization signal (NLS) at its C-terminal, so it is located in the nucleus of most mammalian cells and is primarily distributed in the subnuclear domain named paraspeckles. 2 Emerging evidence strongly indicates new roles for NONO in tumorigenesis, including but not limited to regulating proliferation, apoptosis, cell migration and DNA damage repair. Here, we provide a comprehensive review of the NONO and its functions in tumorigenesis.
AbstractThe non-POU domain-containing octamer-binding protein NONO/p54 nrb , which belongs to the Drosophila behaviour/human splicing (DBHS) family, is a multifunctional nuclear protein rarely functioning alone. Emerging solid evidences showed that NONO engages in almost every step of gene regulation, including but not limited to mRNA splicing, DNA unwinding, transcriptional regulation, nuclear retention of defective RNA and DNA repair. NONO is involved in many biological processes including cell proliferation, apoptosis, migration and DNA damage repair. Dysregulation of NONO has been found in many types of cancer. In this review, we summarize the current and fast-growing knowledge about the regulation of NONO, its biological function and implications in tumorigenesis and cancer progression. Overall, significant findings about the roles of NONO have been made, which might make NONO to be a new biomarker or/and a possible therapeutic target for cancers. K E Y W O R D S DBHS, NONO, splicing, tumorigenesis | 4369 FENG Et al.
Nanoparticle stabilization against detrimental aggregation is a critical parameter that needs to be well controlled. Herein, we present a facile and rapid ion-mediated dispersing technique that leads to hydrophilic aggregate-free quantum dots (QDs). Because of the shielding of the hydrogen bonds between cysteamine-capped QDs, the presence of F(-) ions disassembled the aggregates of QDs and afforded their high colloidal stability. The F(-) ions also greatly eliminated the nonspecific adsorption of the QDs on glass slides and cells. Unlike the conventional colloidal stabilized method that requires the use of any organic ligand and/or polymer for the passivation of the nanoparticle surface, the proposed approach adopts the small size and large diffusion coefficient of inorganic ions as dispersant, which offers the disaggregation a fast reaction dynamics and negligible influence on their intrinsic surface functional properties. Therefore, the ion-mediated dispersing strategy showed great potential in chemosensing and biomedical applications.
The deubiquitinase DUB3 is frequently overexpressed in non-small cell lung cancer (NSCLC) and contributes to its malignant phenotype. However, the underlying molecular mechanism of DUB3 in NSCLC is largely unknown. In this study, we report that DUB3 regulates cell cycle progression by deubiquitinating cyclin A that links to proliferation of NSCLC cells. We found that knockdown of DUB3 decreases cyclin A levels, whereas overexpression of DUB3 strongly increases cyclin A levels. Mechanistically, DUB3 interacts with cyclin A, which removes the polyubiquitin chains conjugated onto cyclin A and stabilizes the cyclin A protein. Furthermore, we demonstrate that DUB3 regulates cell cycle progression by stabilizing cyclin A, because ablation of DUB3 arrests cell cycle from G0/G1 to S phase and the resulting effect can be rescued by introducing cyclin A into NSCLC cells. Functionally, we found that the effect of DUB3 on cyclin A mediates proliferation of NSCLC cells. Moreover, a significant correlation between DUB3 abundance and cyclin A expression levels were also found in NSCLC samples. Taken together, these results reveal that DUB3 functions as a novel cyclin A regulator through maintaining cyclin A stability, and that the DUB3-cyclin A signaling axis plays a critical role in cell cycle progression for proliferation of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.