The problem of large-scale image search has been traditionally addressed with the bag-of-visual-words (BOV). In this article, we propose to use as an alternative the Fisher kernel framework. We first show why the Fisher representation is well-suited to the retrieval problem: it describes an image by what makes it different from other images. One drawback of the Fisher vector is that it is high-dimensional and, as opposed to the BOV, it is dense. The resulting memory and computational costs do not make Fisher vectors directly amenable to large-scale retrieval. Therefore, we compress Fisher vectors to reduce their memory footprint and speed-up the retrieval. We compare three binarization approaches: a simple approach devised for this representation and two standard compression techniques. We show on two publicly available datasets that compressed Fisher vectors perform very well using as little as a few hundreds of bits per image, and significantly better than a very recent compressed BOV approach.
Abstract-Frauds have no constant patterns. They always change their behavior; so, we need to use an unsupervised learning. Fraudsters learn about new technology that allows them to execute frauds through online transactions. Fraudsters assume the regular behavior of consumers, and fraud patterns change fast. So, fraud detection systems need to detect online transactions by using unsupervised learning, because some fraudsters commit frauds once through online mediums and then switch to other techniques. This paper aims to 1) focus on fraud cases that cannot be detected based on previous history or supervised learning, 2) create a model of deep Auto-encoder and restricted Boltzmann machine (RBM) that can reconstruct normal transactions to find anomalies from normal patterns. The proposed deep learning based on auto-encoder (AE) is an unsupervised learning algorithm that applies backpropagation by setting the inputs equal to the outputs. The RBM has two layers, the input layer (visible) and hidden layer. In this research, we use the Tensorflow library from Google to implement AE, RBM, and H2O by using deep learning. The results show the mean squared error, root mean squared error, and area under curve.
Endoscopic imaging plays a very important role in the diagnosis and treatment of lesions. However, the imaging range of endoscopes is small, which may affect the doctors' judgment on the scope and details of lesions. Image mosaic technology can solve the problem well. In this paper, an improved feature-point pair purification algorithm based on SIFT (Scale invariant feature transform) is proposed. Firstly, the K-nearest neighbor-based feature point matching algorithm is used for rough matching. Then RANSAC (Random Sample Consensus) method is used for robustness tests to eliminate mismatched point pairs. The mismatching rate is greatly reduced by combining the two methods. Then, the image transformation matrix is estimated, and the image is determined. The seamless mosaic of endoscopic images is completed by matching the relationship. Finally, the proposed algorithm is verified by real endoscopic image and has a good effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.