Several robust adaptive beamforming (RAB) algorithms based on interference plus noise covariance matrix (INCM) reconstruction have been recently proposed, which can enhance the robustness of beamforming algorithms when certain mismatches occur in the model. However, some approaches ignore the resolution of the Capon spectral estimator (CSE), leading to reconstruction errors. This paper proposes a novel RAB algorithm formulated using the subspace projection method and spatial spectral estimation (SSE), which is named INCM-SSE. First, without using the CSE, the subspace projection matrix (SPM) is obtained through the integral of the angular sector where the signal of interest (SOI) is located. Subsequently, after estimating the direction of arrival (DOA) of incident signals using the multiple signal classification (MUSIC) algorithm, we project the sample covariance matrix (SCM) onto the SPM to eliminate the SOI influence. Then, the estimation method of interference powers is derived. Moreover, the INCM is reconstructed based on the estimated powers and steering vector (SV) of interferences. The SV of the SOI is optimized by solving a quadratic convex optimization problem. The INCM-SSE algorithm not only employs SSE to improve the angular resolution but also reduces the influence of the SOI component by using SPM. Simulation results indicate that the proposed method is robust against various types of mismatches, thus achieving superior overall performance.
The performance of adaptive beamforming is considerably affected by system errors in the gain and phase perturbation errors, direction of arrival mismatch, and incoherent local scattering, especially when the sample data contains the signal of interest (SOI) component. In this study, a robust adaptive beamforming approach based on interference plus noise covariance matrix (INCM) reconstruction using Gauss–Legendre quadrature (GLQ) and steering vector (SV) estimation is developed. The proposed algorithm incorporates the GLQ with the integral over the spherical uncertainty set and uses a linear combination of the integral at several angular nodes to substitute the integral of the entire interference region; consequently, the computational efficiency of reconstructing the INCM is enhanced. The SV of the SOI is represented as a linear combination of several principal eigenvectors of the SOI covariance matrix; thus, the double-constrained problem corresponding to the noise subspace is transformed into a single-constrained model, and its solution can be gained by utilizing the Lagrange multiplier method. Subsequently, the weight vector of the proposed beamformer can be calculated. Numerical simulations indicate that the proposed approach can effectively suppress interferences and exhibits superior overall performance under system errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.