During the design stage of an HVAC (heating, ventilation, and air conditioning) system in a construction project, designers must decide on the most workable design scheme for the plant room in the building based on the evaluation of multiple aspects related to system performance that need to be considered, such as energy efficiency, economic effectiveness, etc. To solve this problem, this paper proposes a comprehensive evaluation method for the plant rooms of centralized air-conditioning systems in commercial buildings. This new method consists of two analyses used in tandem: Building Performance Simulation (BPS) models and a collection of real HVAC design cases (the carried-out design solutions). The BPS models and a knowledge of the reduction approach based on Rough Set (RS) theory are used to generate data and weight factors for the indices of energy efficiency; and the real design cases are employed with a heuristic algorithm to extract the compiled empirical information for other evaluation items of the centralized HVAC system. In addition, this paper also demonstrates an application in an actual case of a building construction project. By comparing the expert decision-making process and the evaluation results, it is found that they are basically consistent, which verifies the reasonability of the comprehensive evaluation method.
During the design and planning stage of a district energy system, the prediction of the cooling and heating loads is an important step. The accurate estimate of the load pattern can provide a basis for the configuration and optimization of the system. To meet the demand in practical application, this paper proposes a fast load prediction method for district energy systems based on a presimulated forward modelling database and KNN (K-nearest neighbor) algorithm and develops it into a practical tool. Owing to the absence of some design parameters at the planning stage, scenario analysis is also used to determine some input conditions for load prediction. In this paper, the scenarios cover three types of building: office, shopping mall and hotel. To test the performance of this new method, we randomly selected 15 virtual buildings (5 buildings for each type) with different design parameters and took their detailed BPS (building performance simulation) model as a benchmark to assess the prediction results of the new method. The index “ratio of the hours with effective prediction” is defined as the ratio of the hours whose relative error of hourly load prediction is less than 15% to the hours whose load is not 0 in the whole year, and the test result shows that this index is not less than 0.9 (90%) for the predicted cooling load of all 45 test cases and the predicted heating load of 25 of the 45 cases. As a research achievement with practical value, this paper accomplishes the programming work of the tool and makes it into a software. The application of this software in the actual project of district energy system is also presented. The performance of the new load prediction tool was compared with the traditional approach commonly used in engineering—the load estimation based on reference building models—and the result shows that the fast load estimate tool can provide the same level of prediction accuracy as traditional simulation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.