Touch point distribution models are important tools for designing touchscreen interfaces. In this paper, we investigate how the finger movement direction affects the touch point distribution, and how to account for it in modeling. We propose the Rotational Dual Gaussian model, a refinement and generalization of the Dual Gaussian model, to account for the finger movement direction in predicting touch point distribution. In this model, the major axis of the prediction ellipse of the touch point distribution is along the finger movement direction, and the minor axis is perpendicular to the finger movement direction. We also propose using projected target width and height, in lieu of nominal target width and height to model touch point distribution. Evaluation on three empirical datasets shows that the new model reflects the observation that the touch point distribution is elongated along the finger movement direction, and outperforms the original Dual Gaussian Model in all prediction tests. Compared with the original Dual Gaussian model, the Rotational Dual Gaussian model reduces the RMSE of touch error rate prediction from 8.49% to 4.95%, and more accurately predicts the touch point distribution in target acquisition. Using the Rotational Dual Gaussian model can also improve the soft keyboard decoding accuracy on smartwatches.
Suggesting multiple target candidates based on touch input is a possible option for high-accuracy target selection on small touchscreen devices. But it can become overwhelming if suggestions are triggered too often. To address this, we propose SATS, a Suggestionbased Accurate Target Selection method, where target selection is formulated as a sequential decision problem. The objective is to maximize the utility: the negative time cost for the entire target selection procedure. The SATS decision process is dictated by a policy generated using reinforcement learning. It automatically decides when to provide suggestions and when to directly select the target. Our user studies show that SATS reduced error rate and selection time over Shift [51], a magnification-based method, and MUCS, a suggestion-based alternative that optimizes the utility for the current selection. SATS also significantly reduced error rate over BayesianCommand [58], which directly selects targets based on posteriors, with only a minor increase in selection time. CCS CONCEPTS• Human-centered computing → Human computer interaction (HCI); Pointing; Touch screens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.