This study investigated the effects of encapsulated cinnamaldehyde ( CIN ) and citral ( CIT ) alone or in combination ( CIN + CIT ) on the growth performance and cecal microbiota of nonvaccinated broilers and broilers vaccinated against coccidiosis. Vaccinated (1,600) and nonvaccinated (1,600) 0-day-old male Cobb500 broilers were randomly allocated to 5 treatments: basal diet (control) and basal diet supplemented with bacitracin ( BAC , 55 ppm), CIN (100 ppm), CIT (100 ppm), and CIN (100 ppm) + CIT (100 ppm). In general, body weight ( BW ) and feed conversion ratio were significantly improved in birds treated with BAC, CIN, CIT, and CIN + CIT ( P < 0.05) but were all decreased in vaccinated birds compared with nonvaccinated birds ( P < 0.05). Significant interactions ( P < 0.05) between vaccination and treatments for average daily gain during the periods of starter (day 0–9) and BW on day 10 were noted. Broilers receiving vaccines ( P < 0.01) or feed supplemented with BAC, CIN, CIT, or CIN + CIT ( P < 0.01) showed reductions in mortality rate from day 0 to 28. The incidences of minor coccidiosis were higher ( P < 0.05) in vaccinated birds than in nonvaccinated birds. Diet supplementation with BAC or tested encapsulated essential oils showed comparable effects on the coccidiosis incidences. Similar to BAC, CIN and its combination with CIT reduced both incidence and severity of necrotic enteritis ( P < 0.05). No treatment effects were observed on the cecal microbiota at the phyla level. At the genus level, significant differences between vaccination and treatment groups were observed for 5 ( Lactobacillus , Ruminococcus , Faecalibacterium , Enterococcus , and Clostridium ) of 40 detected genera ( P < 0.05). The genus Lactobacillus was more abundant in broilers fed with CIT, while Clostridium and Enterococcus were less abundant in broilers fed with CIN, CIT, or CIN + CIT in both the vaccinated and nonvaccinated groups. Results from this study suggested that CIN alone or in combination with CIT in feed could improve chicken growth performance to the level comparable with BAC and alter cecal microbiota composition.
This study evaluated the performance, gut microbiota, and blood metabolites in broiler chickens fed cranberry and blueberry products for 30 days. A total of 2,800 male day-old broiler Cobb-500 chicks were randomly distributed between 10 diets: control basal diet; basal diet with bacitracin (BACI); four basal diets with 1 and 2% of cranberry (CP1, CP2) and blueberry (BP1, BP2) pomaces; and four basal diets supplemented with ethanolic extracts of cranberry (COH150, COH300) or blueberry (BOH150, BOH300) pomaces. All groups were composed of seven replicates (40 birds per replicate). Cecal and cloacal samples were collected for bacterial counts and 16S rRNA gene sequencing. Blood samples and spleens were analyzed for blood metabolites and gene expressions, respectively. The supplementation of COH300 and BOH300 significantly increased the body weight (BW) during the starting and growing phases, respectively, while COH150 improved (P < 0.05) the overall cumulated feed efficiency (FE) compared to control. The lowest prevalence (P = 0.01) of necrotic enteritis was observed with CP1 and BP1 compared to BACI and control. Cranberry pomace significantly increased the quinic acid level in blood plasma compared to other treatments. At days 21 and 28 of age, the lowest (P < 0.05) levels of triglyceride and alanine aminotransferase were observed in cranberry pomace and blueberry product-fed birds, respectively suggesting that berry feeding influenced the lipid metabolism and serum enzyme levels. The highest relative abundance of Lactobacillaceae was found in ceca of birds fed CP2 (P < 0.05). In the cloaca, BOH300 significantly (P < 0.005) increased the abundances of Acidobacteria and Lactobacillaceae. Actinobacteria showed a significant (P < 0.05) negative correlation with feed intake (FI) and FE in COH300-treated birds, whereas Proteobacteria positively correlated with the BW but negatively correlated with FI and FE, during the growing phase. In the spleen, cranberry products did not induce the release of any pro-inflammatory cytokines but upregulated the expression of several Das et al. Cranberry and Blueberry in Broiler genes (IL4, IL5, CSF2, and HMBS) involved in adaptive immune responses in broilers. This study demonstrated that feed supplementation with berry products could promote the intestinal health by modulating the dynamics of the gut microbiota while influencing the metabolism in broilers.
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird’s performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non–vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.