Four phosphorescent cyclometalated iridium(III) complexes containing benzimidazole moiety have been designed and synthesized. These Ir(III) complexes can effectively inhibit several cancerous processes, including cell migration, invasion, colony formation, and angiogenesis. Interestingly, they show a much higher singlet oxygen quantum yield in an acidic solution than in a neutral solution. Upon irradiation at 425 nm with low energy (1.2 J cm), they can induce apoptosis through lysosomal damage, evaluation of reactive oxygen species level, and activation of caspase-3/7. The highest phototoxicity index is >476, with almost no dark cytotoxicity observed for Ir4. Ir4 can also inhibit tumor growth effectively in nude mice in vivo after photodynamic therapy. An in vitro assay against 70 kinases indicates that maternal embryonic leucine zipper kinase (MELK), PIK3CA, and AMPK are the possible molecular targets. The half maximal inhibitory concentration of Ir4 toward MELK is 1.27 μM. Our study demonstrates that these Ir(III) complexes are promising anticancer agents with dual functions, including metastasis inhibition and lysosome-damaged photodynamic therapy.
In this report, we designed a histone deacetylase-targeted phosphorescent Re(I) complex ReLMito. Colocalization studies suggested that ReLMito could specially localize to mitochondria. We also demonstrated that ReLMito could induce paraptosis in cancer cells. These features endowed the complex with potential to induce and monitor mitochondrial morphological changes during the paraptosis simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.