Background
Population movement could extend multidrug-resistant tuberculosis (MDR-TB) transmission and complicate its global prevalence. We sought to identify the high-risk populations and geographic sites of MDR-TB transmission in Shenzhen, the most common destination for internal migrants in China.
Methods
We performed a population-based, retrospective study in patients diagnosed with MDR-TB in Shenzhen during 2013–2017. By defining genomic clusters with a threshold of 12–single-nucleotide polymorphism distance based on whole-genome sequencing of their clinical strains, the clustering rate was calculated to evaluate the level of recent transmission. Risk factors were identified by multivariable logistic regression. To further delineate the epidemiological links, we invited the genomic-clustered patients to an in-depth social network investigation.
Results
In total, 105 (25.2%) of the 417 enrolled patients with MDR-TB were grouped into 40 genome clusters, suggesting recent transmission of MDR strains. The adjusted risk for student to have a clustered strain was 4.05 (95% confidence interval, 1.06–17.0) times greater than other patients. The majority (70%, 28/40) of the genomic clusters involved patients who lived in different districts, with residences separated by an average of 8.76 kilometers. Other than household members, confirmed epidemiological links were also identified among classmates and workplace colleagues.
Conclusions
These findings demonstrate that local transmission of MDR-TB is a serious problem in Shenzhen. While most transmission occurred between people who lived distant from each other, there was clear evidence that transmission occurred in schools and workplaces, which should be included as targeted sites for active case finding.
The average residential distance between genomic-clustered cases was more than 8 kilometers, while schools and workplaces, identified as sites of transmission in this study, deserve increased vigilance for targeted case finding of multidrug-resistant tuberculosis.
c Antibody-dependent cell-mediated cytotoxicity (ADCC) bridges innate and adaptive immunity, and it involves both humoral and cellular immune responses. ADCC has been found to be a main route of immune protection against viral infections in vivo. Hemagglutinin (HA) of influenza virus is highly immunogenic and considered the most important target for immune protection. Several potent cross-reactive HA-specific neutralizing monoclonal antibodies (MAbs) have been reported, and their conserved neutralizing epitopes have been revealed, but there has been no report so far about ADCC epitopes on HA. Here we identified two dominant ADCC epitopes, designated E1 (amino acids [aa] 92 to 117) and E2 (aa 124 to 159), on HA of pandemic H1N1 influenza virus by epitope mapping of convalescent-phase plasma IgG antibodies from six H1N1-infected human subjects in China that exhibited different levels of ADCC activity. The E1 and E2 ADCC epitopes overlapped with immunodominant epitopes of HA. Depletion of purified patient plasma IgG antibodies with EBY100 yeast cells expressing E1 or E2 decreased the ADCC activity of the IgG antibodies. E1 and E2 sequences were found to be highly conserved in H1N1 strains but less so in other subtypes of influenza A viruses. Our study may aid in designing immunogens that can elicit antibodies with high ADCC activity. Vaccine immunogens designed to include the structural determinants of potent broadly neutralizing antibodies and ADCC epitopes may confer comprehensive immune protection against influenza virus infection.
Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10–3 and 1.92 × 10–3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.