The large depth of images for microscopic measurement can be achieved by using focus stacking techniques with a small depth of field of objective lens. It is implemented by fusing the image sequences of short depth images. However, the non-linear movement of the objective imaging system or the measured object caused by the moving stage straightness error brings the misalignment of the image sequences, such as transversal translation, rotation, and tilting. All of these interferences, as well as the image brightness variation must be corrected by image registration before fusing the image sequences. In this paper, a fast-automatic registration method based on the scale invariant feature transform (SIFT) is proposed. It is achieved by firstly segmenting the focal regions of the image sequences through fast edge detection. Then the image features are extracted within the small segmented focal areas. It greatly reduces the computational cost of feature extraction and the following steps of image correction, and alignment. In the process, the random sampling consistency (RANSAC) algorithm is also used to remove the mistake features. The Laplacian pyramid method is adopted for the large depth of image fusion. The experimental results show that the proposed method is more efficient than the traditional SIFT algorithm. Its registration efficiency is improved by about 60%. This method facilitates the high-precision and real-time imaging of a monocular three-dimensional focus stacking.
A polarization-sensitive white light interferometer (PSWLI), which is a promising technique that can be used to measure the stress induced birefringence, is developed. The use of wide-spectrum light source brings to PSWLI a resolution in the micron range, but the difficulty arises when searching for the best fringe contrast within the extremely short coherence length, especially for the Linnik interference configuration. To tackle this problem, an autofocus device based on the improved astigmatic method is embedded in the PSWLI system to firstly automatically determine the best foci of the reference mirror and the test sample. Then the minimization of optical path difference (OPD) of two interference arms are implemented by the root mean square fringe contrast function combined with a 4×4 pixel binning of the CCD camera. The autofocus time is no more than 0.3 second and the minimization of OPD has a speed of 2.2 min/mm. Finally, the developed PSWLI system is calibrated by the Berek compensator and the birefringence measurement result is obtained by simultaneously calculating the phase retardation, the optical axis orientation, the reflectance and the stress map of a stress induced birefringence sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.