Growth of new blood vessels (angiogenesis), required for all tumor growth, is stimulated by the expression of vascular endothelial growth factor (VEGF). VEGF is up-regulated in all known solid tumors but also in atherosclerosis, diabetic retinopathy, arthritis, and many other conditions. Conventional VEGF isoforms have been universally described as proangiogenic cytokines. Here, we show that an endogenous splice variant, VEGF 165 b, is expressed as protein in normal cells and tissues and is circulating in human plasma. We also present evidence for a sister family of presumably inhibitory splice variants. Moreover, these isoforms are down-regulated in prostate cancer. We also show that VEGF 165 b binds VEGF receptor 2 with the same affinity as VEGF 165
Bevacizumab, an anti-vascular endothelial growth factor (VEGF-A) antibody, is used in metastatic colorectal carcinoma (CRC) treatment, but responses are unpredictable. Vascular endothelial growth factor is alternatively spliced to form proangiogenic VEGF 165 and antiangiogenic VEGF 165 b. Using isoform-specific enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, we found that over 90% of the VEGF in normal colonic tissue was VEGF xxx b, but there was a variable upregulation of VEGF xxx and downregulation of VEGF xxx b in paired human CRC samples. Furthermore, cultured colonic adenoma cells expressed predominantly VEGF xxx b, whereas colonic carcinoma cells expressed predominantly VEGF xxx . However, adenoma cells exposed to hypoxia switched their expression from predominantly VEGF xxx b to predominantly VEGF xxx . VEGF 165 b overexpression in LS174t colon cancer cells inhibited colon carcinoma growth in mouse xenograft models. Western blotting and surface plasmon resonance showed that VEGF 165 b bound to bevacizumab with similar affinity as VEGF 165 . However, although bevacizumab effectively inhibited the rapid growth of colon carcinomas expressing VEGF 165 , it did not affect the slower growth of tumours from colonic carcinoma cells expressing VEGF 165 b. Both bevacizumab and anti-VEGF 165 b-specific antibodies were cytotoxic to colonic epithelial cells, but less so to colonic carcinoma cells. These results show that the balance of antiangiogenic to proangiogenic isoforms switches to a variable extent in CRC, regulates tumour growth rates and affects the sensitivity of tumours to bevacizumab by competitive binding. Together with the identification of an autocrine cytoprotective role for VEGF 165 b in colonic epithelial cells, these results indicate that bevacizumab treatment of human CRC may depend upon this balance of VEGF isoforms.
Peripheral artery disease (PAD) generates tissue ischemia through arterial occlusions and insufficient collateral vessel formation. Vascular insufficiency in PAD occurs despite higher circulating levels of vascular endothelial growth factor A (VEGF-A),1,2 a key regulator of angiogenesis. Here, we show that clinical PAD is associated with elevated anti-angiogenic VEGF-A splice isoform (VEGF-A165b), and a corresponding reduction of the pro-angiogenic VEGF-A165a isoform. In a murine model of PAD, VEGF-A165b was upregulated by conditions associated with impaired limb revascularization, including leptin-deficiency, diet-induced obesity, genetic ablation of the secreted frizzled-related protein 5 (Sfrp5) adipokine and transgenic overexpression of Wnt5a in myeloid cells. In PAD models, delivery of VEGF-A165b inhibited revascularization of ischemic hind limbs, whereas treatment with an isoform-specific neutralizing antibody reversed the impaired revascularization phenotype caused by metabolic dysfunction or perturbations in the Wnt5a/Sfrp5 regulatory system. These results indicate that inflammation driven expression of the anti-angiogenic VEGF-A isoform can contribute to impaired collateralization in ischemic cardiovascular disease.
Aims/hypothesis: Proliferative diabetic retinopathy results from excess blood vessel growth into the vit-
Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A 165 b in diabetic nephropathy. Renal expression of VEGF-A 165 b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A 165 b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A 165 b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A 165 b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A 165 b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A 165 b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.