Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. The identity and role of cell surface molecules driving complex biological events leading to HCC progression are poorly understood, hence representing major lacunae in HCC therapies. Here, combining SILAC quantitative proteomics and biochemical approaches, we uncover a critical oncogenic role of Agrin, which is overexpressed and secreted in HCC. Agrin enhances cellular proliferation, migration and oncogenic signalling. Mechanistically, Agrin’s extracellular matrix sensor activity provides oncogenic cues to regulate Arp2/3-dependent ruffling, invadopodia formation and epithelial–mesenchymal transition through sustained focal adhesion integrity that drives liver tumorigenesis. Furthermore, Agrin signalling through Lrp4-muscle-specific tyrosine kinase (MuSK) forms a critical oncogenic axis. Importantly, antibodies targeting Agrin reduced oncogenic signalling and tumour growth in vivo. Together, we demonstrate that Agrin is frequently upregulated and important for oncogenic property of HCC, and is an attractive target for antibody therapy.
First discovered by genetic analysis of yeast secretion mutants, the evolutionarily conserved vesicular coat protein II (COPII) complex is responsible for membrane transport from the endoplasmic reticulum (ER) to the Golgi apparatus. In recent years, extensive efforts in structural, morphological, genetic and molecular analysis have greatly enhanced our understanding of the structural and molecular basis of COPII subunit assembly and selective cargo packaging during ER export. Very recent data have also indicated that a more "classical" picture of vesicle formation from ER exit sites (ERES) followed by their transport to the Golgi is far from accurate. Proteins modulating the function of COPII have also emerged in recent analysis. They either affect COPII-based cargo selection, the formation of vesicle/transport carrier, or subsequent targeting of the transport carrier. Together, elucidation of COPII-mediated ER export has painted a fascinating picture of molecular complexity for an essential process in all eukaryotic cells.
Although all mammalian COPII components have now been cloned, little is known of their interactions with other regulatory proteins involved in exit from the endoplasmic reticulum (ER). We report here that a mammalian protein (Yip1A) that is about 31% identical to S. cerevisiae and which interacts with and modulates CO-PII-mediated ER-Golgi transport. Yip1A transcripts are ubiquitously expressed. Transcripts of a related mammalian homologue, Yip1B, are found specifically in the heart. Indirect immunofluorescence microscopy revealed that Yip1A is localized to vesicular structures that are concentrated at the perinuclear region. The structures marked by Yip1A co-localized with Sec31A and Sec13, components of the COPII coat protein complex. Immunoelectron microscopy also showed that Yip1A co-localizes with Sec13 at ER exit sites. Overexpression of the hydrophilic N terminus of Yip1A arrests ER-Golgi transport of the vesicular stomatitis G protein and causes fragmentation and dispersion of the Golgi apparatus. A glutathione S-transferase fusion protein with the hydrophilic N terminus of Yip1A (GST-Yip1A) is able to bind to and deplete vital components from rat liver cytosol that is essential for in vitro vesicular stomatitis G transport. Peptide sequence analysis of cytosolic proteins that are specifically bound to GST-Yip1A revealed, among other proteins, mammalian COPII components Sec23 and Sec24. A highly conserved domain at the N terminus of Yip1A is required for Sec23/Sec24 interaction. Our results suggest that Yip1A is involved in the regulation of ER-Golgi traffic at the level of ER exit sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.